thhon

oding
For Beginners

Get started with new programming skills

Over

450

Tips & Hints
inside

@ Jargon-free
Tips & Advice

@ Step-by-step Tutorials
@ Clear Full Colour Guides

100% INDEPENDENT Papercut

Get Your Exclusive
FREE Gift Worth

£9.99 Here!

Download Your
FREE Copy
of The
Ultimate Python
Coding Manual

The Ultimate

YTHON

Coding Manual

(V] Ma(ster Coding Skills (% Step-by-Step Guides (Learn Python 3

Head over to your web
browser and follow these
simple instructions...

version of Python program listings ’ tips and tutorials

1/ Enter the following URL: www.pclpublications.com/exclusives

2/ sign up/in and from the listings of our exclusive customer
downloads, highlight the The Ultimate Python Coding Manual option.
3/ Enter your unique download code (Listed below) in the “Enter
password to download” bar.

4/ Click the Download Now! Button and your digital manual will
automatically download.

5/ Your file is a high resolution PDF file, which is compatible with the
maijority of customer devices/platforms.

Exclusive Download Code: PCL64792CM

NOTE: This is a limited reader offer running from Ist June 2024 to Ist September 2024.
Terms and conditions apply and can be found at www.pclpublications.com

Python

For Beginners
Y]

Python For Beginners is the first and only choice
if you are a new adopter and want to learn
everything you’ll need to get started with
coding. This independent guide is crammed
with helpful guides and step-by-step fully
illustrated tutorials, written in plain easy to
follow English. Over the pages of this new user
guide you will clearly learn all you need to know
about coding your own amazing apps. With this
unofficial instruction manual at your side no
problem will be unsolvable, no question
unanswered as you learn, explore and enhance
your user experience.

S

Papercut

www.pclpublications.com

9 3WMORXew
q v 70B7 Yy o
DI1LNX L] v

Hello World

‘N~ <[

) rus&dw H
KMa-" =e¢e
1 &€ nh Qs 1
W< a TeaP
a o 90 @ E
O{ KNNKeNX
W i 2)%

n Getting Started

L
-

3 -V
£ O - X[=s
D X2 -~

S @ I 7= s v 5))|
RE<<| mMmoif

12 2. 08 — A

-~

8 Being a Programmer 16 Why Python?

10 ABrief History of Coding 18 Python onthe Pi

12 What can You Do with Python? 20 Using Virtual Machines

14 Python in Numbers 22 Creating a Coding Platform

26 Equipment You Will Need

How to Set Up Python in Linux

Starting Python for the First Time

Your First Code

Using Comments

Creating Functions

Python Modules

Python in Focus: Stitching
k

Conditions and Loops

"
" "1] L]
o L e E Working with Data
- “ & ot A .
%yiéé‘] ’ / 0 * 64 Lists 76 Opening Files
B L, @iw £ 66 Tuples 78 Writing to Files
T E ;a F?m b 68 Dictionaries 80 Exceptions
o 2860 ‘! !
: J ‘:i w :2,, i ’ P 70 Splitting and Joining Strings 82 Python Graphics
™ M F ‘r ggg"; £ 72 Formatting Strings 84 Combining What You Know So Far
- - % o 74 Date and Time 86 Python in Focus: Gaming
e 0 d
. N . K Yo il 0

_ www.pql;ﬁubuations.cpm
t O

A 1 | |

‘ED
R[L]w@
L2 [

- [=
Jes)

\i=vejR]Juwbabld R1TR@UORBs [wa” Z° —a " b<Oceo1lovs<B/
[f OO0 /o d XL<—H*F } K'xP 1 ' BALOONAa B A - NK

b ¥ 6.z ["LyqglOwulund f o g0q " sV 2l | oun Qs B M S TP TV
ONuBR®nNns, KWS* " [k. akp'ﬂpammziw
1R 78 \www FEGaeca/ v @ w.XR “WulKKnuZiKR _

2 T A 81 5%, WA S O g&adNMenay, =00 BU .. oomeo
— H | 2 2 N " Q Xk h [-

For more great Python, Linux & Raspberry Pi coding
guides and tutorials visit us at: www.pclpublications.com

FREE CODE DOWNLOAD!

50 Complete programs!
Over 20,000 lines of code!

Visit PCL's Exclusive Code Portal; www.pclpublications.com/exclusives

Please note: Sign up required to access download file.

Getting Started)

www.pclpublications.com

y
|

1

Cooumssres @

Getting
Started

Python is a high-level, general-purpose programming language that was
developed by Guido van Rossum in the late eighties and is based upon a
number of other languages, while being the successor to the popular
ABC language.

It has been devised to work on a human level, so it's readable and
understandable without needing to delve into obscure volumes of
machine code, hexadecimal characters, or even ones and zeros.

It's clear, logical, comprehensive, powerful and functional, yet also easy
to follow and learn.

You will find Python at the heart of some of the most interesting and
cutting-edge technologies in the world. It's the code that binds
supercomputer algorithms together; it's used in the space industry, and
in science and engineering. Al, and the likes of Alexa and Siri, Cortana
and the Google Assistant all utilise Python for their powerful voice
recognition technology. It's simply an amazing, versatile and incredible
language to learn.

So let’s get started and explore what you need to become a
Python programmer.

www.pclpublications.com 7

E Getting Started>

Being a Programmer

Programmer, developer, coder, they're all titles for the same occupation, someone who
creates code. What they're creating the code for can be anything from a video game

to a critical element on-board the International Space Station. How do you become a
programmer though?

8 www.pclpublications.com

< Being a Programmer m

MORE THAN CODE

For those of you old enough to remember the ‘80s, the golden era of home
computing, the world of computing was a very different scene to how it is
today. 8-bit computers that you could purchase as a whole, as opposed to
being in kit form and you having to solder the parts together, were the stuff
of dreams; and getting your hands on one was sheer bliss contained within
a large plastic box. However, it wasn’t so much the new technology that
computers then offered, moreover it was the fact that for the Ffirst time
ever, you could control what was being viewed on the ‘television'.

Instead of simply playing one of the thousands of games available at the
Times have changed since programming in the ‘80s, time, many users decided they wanted to create their own content, their
but the core values still remain. own games; or simply something that could help them with their homework
or home finances. The simplicity of the 8-bit home computer meant that
creating something from a few lines of BASIC code was achievable and so

'l]
I t S U p to yo U the first generation of home-bred programmer was born.

From that point on, programming expanded exponentially. It wasn't long

h OW Fa r to ta ke before the bedroom coder was a thing of the past and huge teams of

designers, coders, artists and musicians were involved in making a single
game. This of course led to the programmer becoming more than simply

y 0 U r CO d i n g someone who could fashion a sprite on the screen and make it move at the

press of a key.

a d Ve n tu re ! o Naturally, time has moved on and with it the technology that we use.

However, the fundamentals of programming remain the same; but what
exactly does it take to be a programmer?

The single most common trait of any programmer, regardless of what
they're doing, is the ability to see a logical pattern. By this we mean

void getup()

— N someone who can logically follow something from start to finish and
extcolor 3 " . . ’

tixtna?;ground(ls); envisage the intended outcome. While you may not feel you're such a
clrscri); i W . o e
window(18,2,70,3); person, it is possible to train your brain into this way of thinking. Yes, it
cprintf("Press X to Exit, Press Space to Jump"); & . 5 5 § g
“i”‘.“’;‘ifzgﬁaig’”;) takes time but once you start to think in this particular way you will be able
cprin - e
window(1,25,80,25); to construct and follow code.
for(int x=0;x<79;x++)
cprintf("n");
textcolor(@); < _w . . ;

} Second to logicis an understanding of mathematics. You don’t have to be

int t,speed=40; at a genius level but you do need to understand the rudiments of maths.

void ds(int jump=@)

Maths is all about being able to solve a problem and code mostly falls under
the umbrella of mathematics.

static int a=1;

m i (jump==0)
t=0;

else if(jump==2)

) Being able to see the big picture is certainly beneficial for the modern
winqo;«i%;xs-t,ls,zs); - programmer. Undoubtedly, as a programmer, you will be part of a team
cir;nggg mnnnm:;; of other programmers, and more than likely part of an even bigger team
cﬂriﬁgiu nnnnnnnn:g; of designers, all of whom are creating a final product. While you may only

. cgrintfé" AnM wnRnAnAM g be expected to create a small element of that final product, being able to

cprintf (" nannnannnnnn 0 "); @ i § .
gEzif\th:l anaann =3 understand what everyone else is doing will help you create something
corint(* aanan)3 that's ultimately better than simply being locked in your own coding cubicle.
cprintf(" nm M 2
}zlse ii(a::l) :

Sy wwn wee 93 Finally, there’s also a level of creativity needed to be a good programmer.
cprintf(" m =) o , - : .

i S . Again though, you don’t need to be a creative genius, just have the
L isedeia=a) imagination to be able to see the end product and how the user will interact
Epr‘intf(“ nnm nn e with it.
cprintf(" nm ")
a=1;

: ~— Lorintece)3 There is of course a lot more involved in being a programmer, including
} detar(ep=t} learning the actual code itself. However, with time, patience and the
- 9 p
Yol o) determination to learn, anyone can become a programmer. Whether
Being able to follow a logical pattern and you want to be part of a triple-A video game team or simply create an
see an end result is one of the most valued automated routine to make your computing life easier, it's up to you how
skills of a programmer. far to take your coding adventure!

www.pclpublications.com

A Brief History of Coding

It's easy to think that programming a machine to automate a process, or calculate a value,
is a modern concept that's only really happened in the last Fifty years or so. However, that
assumption is quite wrong, coding has actually been around for quite some time.

0100001101101111 01100100 01101001 0110111001100111

Essentially all forms of coding are made up of ones and zeros - on or off states. This works
for both a modern computer and even the oldest known computational device.

It's difficult to pinpoint an exact
start of when humans began to
‘program’ a device. However,

it's widely accepted that the
Antikythera Mechanism is possibly
the first ‘coded’ artefact. It's
dated to about 87 BC and is an
ancient Greek analogue computer
and orrery used to predict
astronomical positions.

1842-1843

1930-1950

Joseph Marie Jacquard invents a
programmable loom, which used cards with
punched holes to create the textile design.
However, it is thought that he based his
design on a previous automated weaving
process from 1725, by Basile Bouchon.

The Banl Msa brothers, three Persian
scholars who worked in the House of
Wisdom in Baghdad, published the
Book of Ingenious Devices in around
850 AD. Among the inventions listed
was a mechanical musical instrument:
a hydro-powered organ that played

interchangeable cylinders automatically.

10 www.pclpublications.com

Ada Lovelace translated
the memoirs of the Italian
mathematician, Francis
Maneclang, regarding
Charles Babbage's
Analytical Engine. She
made copious notes within
her writing, detailing a
method of calculating
Bernoulli Numbers

using the engine. This is
recognised as the Ffirst
computer program. Not
bad, considering there
were no computers
available at the time.

During the Second World

War, significant advances
were made in programmable
machines. Most notably, the
cryptographic machines used
to decipher military codes
used by the Nazis. The Enigma
was invented by the German
engineer Arthur Scherbius,
but was made famous by Alan
Turing at Bletchley Park'’s
codebreaking centre.

1951-1958

SET § BITS AND 2 STOP

TART OF MONTTOR

HEXR' CONVERT ASC:

7E CO A¥ HEXERK OX = RETURN T

The first true computer code was
Assembly Language (ASM) or
Regional Assembly Language. ASM
was specific to the architecture

of the machine on which it was
being used. In 1951, programming
languages fell under the generic
term Autocode. Soon languages
such as IPL, FORTRAN and ALGOL
58 were developed.

From the 1970s, the development of the likes of C, SQL, C with
Classes (C++), MATLAB, Common Lisp and more, came to the
fore. The '80s was undoubtedly the golden age of the home
computer, a time when silicon processors were cheap enough for
ordinary folk to buy. This led to a boom in home/bedroom coders
with the rise of 8-bit machines.

1960-1970

Computer programming

was mainly utilised by
universities, the military and
big corporations during the ‘60s
and the ‘70s. A notable step
toward a more user-friendly,
or home user, language was
the development of BASIC
(Beginners All-purpose
Symbolic Instruction Code) in
the mid-sixties.

": N

Admiral Grace Hopper was part of
the team that developed the UNIVAC
| computer and she eventually
developed a compiler for it. In time,

the compiler she developed became
COBOL (Common Business-oriented
Language), a computer language that's
stillin use today.

1970-1985

1990s-Present Day

ABAP
Visual Basic

e-C

Erlang c#D F“ML act
JavaScripts p rh,

2 Assembly Scratch

ython o

Scheme o= e
Haskellcs §

£

ActionScript g

Ohjectiv
‘u_.MA

2

The Internet age brought a wealth of new
programming languages and allowed
people access to the tools and knowledge
needed to learn coding in a better way.
Not only could a user learn how to code,
they could also freely share their code and
source other code to improve their own.

www.pclpublications.com 1

) cering sane
What can You

Do with Python?

Python is an open-source, object-oriented programming language that’s simple
to understand and write, yet also powerful and extremely malleable. It's these
characteristics that help make it such an important language to learn.

Python's ability to create highly readable code within a small set find lots of examples of this, where Python is acting behind the
of instructions has a considerable impact on our modern digital scenes. This is why it's such an important language to learn.
world. From the ideal, first programmers’ choice to its ability to
create interactive stories and games; from scientific applications to Beautiful is better than ugly
artificial Intelligence and web-based applications, the only limit to g"""“‘ b5 batter thaf Impliaf

/ / ’ / e s imple is better than complex
Python is the imagination of the person coding in it. é Complex Is better than complicated

at is better than nested.

Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules

It's Python's malleable design that makes it an ideal language for

many different situations and roles. Even certain aspects of the Although practicality beats purity.
’ 4 o 4 Errors should never pass silently.
coding world, that require more efficient code, still use Python. Unless explicitly silenced.
o In the face of ambiguity, refuse the temptation to guess

FOF example, NASA UtllISQS Python bOth asa stand-alone language There should be one-- and preferably only one --obvious way to do it
and asa bridge between other programming [anguages_ ThiS way Although that way may not be obvious at first unless you're Dutch

/ / . $ Now is better than never
NASA scientists and engineers are able to get to the data they Although never is often better than *right* now

g / g / If the implementation is hard to explain, it's a bad idea.

need WlthOUt ha\"ng tO cross multlple language barrlers; Python If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea -- let's do more of those!

fills the gaps and provides the means to get the job done. You'll

BIG DATA

Big data is a buzzword you're likely to have come across in the last couple of years.
Basically, it means extremely large data sets that are available for analysis to reveal
patterns, trends and interactions between humans, society and technology. OFf course,
it's not just limited to those areas, big data is currently being used in a variety of
industries, from social media to health and welfare, engineering to space exploration
and beyond.

Python plays a substantial role in the world of big data. It's extensively used to analyse
huge chunks of the available big data and extract specific information based on

lection at the end -add
ob.select= 1

what the user/company requires from the wealth of numbers present. Thanks to an _ob.select
: 0 2 & . i Sntext.scene. ctive
impressive set of data processing libraries, Python makes the act of getting to the data, ccted- » TS i

in amongst the numbers, that counts and presenting it in a fashion that's readable and
useable for humans.

y» ob.select = @
bpyl-context.selected_obj

i A‘ta.obje(ts[one.name].srl-
There are countless libraries and freely available modules that enable fast, secure and arint(” lect exacthy
more importantly, accurate processing of data from the likes of supercomputing clusters. - > | ASSES -
For example, CERN uses a custom Python module to help analyse the 600 million — =% w
collisions per second that the Large Hadron Collider (LHC) produces. A different language - .,.
handles the raw data, but Python is present to help sift through the data so scientists 5
can get to the content they want without the need to learn a far more complex — Opei aﬁj’,’l;,e selfC“‘ -
programming language. ‘ -, X :1$ m‘.‘-irror,"

L B i

12 www.pclpublications.com

ARTIFICIAL INTELLIGENCE

Artificial Intelligence and Machine Learning are two of the
most groundbreaking aspects of modern computing. Al is the
umbrella term used for any computing process wherein the
machine is doing something intelligent, working and reacting
in similar ways to humans. Machine Learning is a subset of Al
and provides the overall Al system with the ability to learn
from its experiences.

However, Al isn't simply the creation of autonomous robots
intent on wiping out human civilisation. Indeed, Al can be
found in a variety of day-to-day computing applications where
the ‘machine’, or more accurately the code, needs to learn
from the actions of some form of input and anticipate what
the input is likely to require, or do, next.

This model can be applied to Facebook, Google, Twitter,
Instagram and so on. Have you ever looked up a celebrity on
Instagram and then discovered that your searches within other
social media platforms are now specifically targeted toward
similar celebrities? This is a prime example of using Al in
targeted advertising and behind the code and algorithms that
predict what you're looking for, is Python.

Spotify, for example, uses Python based code, among
other things, to analyse your musical habits and
offer playlists based on what you've listened to

in the past. It's all clever stuff and, moving
forward, Python is at the forefront of the way
the Internet will work in the future. 1

WEB DEVELOPMENT

Web development has moved on considerably since the early
days of HTML scripting in a limited text editor. The many
frameworks and web management services available now
means that building a page has become increasingly complex.

Wwith Python, the web developer has the ability to create
dynamic and highly secure web apps, enabling interaction with
other web services and apps such as Instagram and Pinterest.
Python also allows the collection of data from other websites
and even apps built within other websites.

can You Do with Python?

@ Minecraft Launcher

O ENGLISH - UNITED KINGDOM

QERTICEG02 v HELP

MIHECRAF\ X
W skins Settings

Launch options

&MOJANG

GAMING

Although you won't find too many triple-A rated games coded using
Python, you may be surprised to learn that Python is used as an
extra on many of the high-ranking modern games.

The main use of Python in gaming comes in the form of scripting,
where a Python script can add customisations to the core game
engine. Many map editors are Python compatible and you will also
come across it if you build any mods for games, such as The Sims.

A lot of the online, MMORPG (Massively Multiplayer Online Role-
Playing Game) games available utilise Python as a companion
language for the server-side elements. These include: code to
search for potential cheating, load balancing across the game'’s
servers, player skill matchmaking and to check whether the player’s
clientside game matches the server’s versions. There’s also a
Python module that can be included in a Minecraft server, enabling
the server admin to add blocks, send messages and automate a lot
of the background complexities of the game.

PYTHON EVERYWHERE

As you can see, Python is quite a versatile
programming language. By learning Python,
you are creating a well-rounded skillset that's
able to take you into the next generation of
computing, either professionally or simply as
a hobbyist.

Whatever route you decide to take on your
coding journey, you will do well to have
Python in your corner.

www.pclpublications.com 13

E Getting Started>

There's a

lot to like about
Python, but don't just—
take our word for it. Here are
some amazing Facts and Figures
surrounding one of the most popular
programming languages of recent years.

M

Alexa, Amazon’s Virtual
Personal Assistant, uses
Python to help with

Data analysis and
Machine Learning are the
two most used Python

NOHLA

speech recognition. examples.
' r
In _ eececccececooe ’
DECEMBER
PYTHON AND
2023 LINUX SKILLS |
ARE THE THIRD . .
honwssthemost MOST POPULAR | inies enderman software
discussed language on “IT.SKILLS IN to operate between other
X the Internet. THE UK. graphics packages.

SHATGWNN

r

OVER 75% OF 90% OF ALL IT'SEESTIMATED
RECOMMENDED FACEBOOK POSTS THAT OVER 75% OF
CONTENT FROM NETFLIX ARE FILTERED NASA'S WORKFLOW
IS GENERATED FROM THROUGH PYTHON- AUTOMATION
MACHINE LEARNING - CODED MACHINE SYSTEMS ON-BOARD
CODED BY PYTHON. LEARNING. THELS.S. USE PYTHON.

www.pclpublications.com

16,000
Haetn
LLLLLLLY)

There are over 16,000 Python jobs
posted every six months in the UK.

<Python in Numbers m

SOUGHT-AFTER
- JOBS IN THE UK.

—PYTHON SKILL-BASED - ~ ¥
POSITIONS ARE THE

16

 MOST

p,

Python Data Science is

thought to become the

most sought-after job in
the coming years.

(" o~

Google is the top
company for hiring Python
developers, closely

followed by Microsoft.

Data Science, Blockchain
and Machine Learning
are the fastest growing

Python coding skills.

New York and San
Francisco are the top
Python developer cities
in the world.

0000000000000 00000000006000000800000000000000000000006006000000000000000

Python developers enjoy an average salaryof

=£60,000

95% OF ALL BEGINNER
CODERS START WITH
AND STILL USE,
PYTHON AS THEIR
PRIMARY OR
SECONDARY LANGUAGE.

75% OF ALL PYTHON
DEVELOPERS USE
PYTHON 3, WHEREAS
25% STILL USE THE
OUTDATED PYTHON 2
VERSION.

79% OF ALL
PROGRAMMERS USE
PYTHON ON A DAY-TO-
DAY BASIS, 21% USE
IT AS A SECONDARY
LANGUAGE.

Tl

49% OF WINDOWS
10 DEVELOPERS
USE PYTHON 3
AS THEIR MAIN
PROGRAMMING
LANGUAGE.

www.pclpublications.com

Why Python?

There are many different programming languages available for the modern computer,
and some still available for older 8 and 16-bit computers too. Some of these languages

are designed for scientific work, others for mobile platforms and such. So why choose
Python out of all the rest?

PYTHON POWER

Ever since the earliest home computers were available, enthusiasts, users and professionals have toiled away until the wee
hours, slaving over an overheating heap of circuitry to create something akin to magic.

These pioneers of programming carved their way into a new
frontier, forging small routines that enabled the letter ‘A’ to scroll
across the screen. It may not sound terribly exciting to a generation
that's used to ultra high-definition graphics and open world, multi-
player online gaming. However, forty-something years ago it was
blindingly brilliant.

Naturally these bedroom coders helped form the foundations for
every piece of digital technology we use today. Some went on to
become chief developers for top software companies, whereas
others pushed the available hardware to its limits and founded the
billion pound gaming empire that continually amazes us.

Regardless of whether you use an Android device, iOS device, PC,
Mac, Linux, Smart TV, games console, MP3 player, GPS device built-in
to a car, set-top box or a thousand other connected and ‘smart’
appliances, behind them all is programming.

All those aforementioned digital devices need instructions to tell
them what to do, and allow them to be interacted with. These
instructions form the programming core of the device and that core
can be built using a variety of programming languages.

The languages in use today differ depending on the situation, the
platform, the device’s use and how the device will interact with its

##: Bombs - GUI - ThelDE - [d:\uppsrc\CtriLib\ArrayCtrl.cpp windows-1252] { examples }
File Edit Macro Project Build Debug Assist Setup

[E[=]

Ln639, Col45

& LineEdit.cpp

& DocEdit.cpp

scrollBar.h

& ScrollBar.cpp
HeaderCtrl.h
& HeaderCtrl.cpp
Arravctrlh

& ArrayCtrl.cpp
DropChoice.h
& DropBox.cpp
& Droplist.cpp
& DropPusher.cpp
& DropChoice.cpp
StaticCtrl.h

& Static.cpp

splitter.h

& splitter.cpp

& FrameSplitter.cpp
SliderCtrl.h

& SliderCtrl.cpp
ColumnList.h
& ColumnList.cpp
Progress.h

& Progress.cpp
H# Akeys.h

01

16 www.pclpublications.com

4 B @ [ou v|[vmscricboebucv| BB | B | By i e # | 0@
dBBombs | &P plugin/bmp SetCursor(p.y);
B crilib B pluginz ctrl::childGotFocus();
B Crricore i B pluginipng
B RichText <prj-aux . . b |
& PdfDraw 3 P ¥01d ArrayCtrl::childLostFocus()
%2;: i ez if(cursor >= 0)
! RefreshRow(cursor) ;
ctrl::childLostFocus();
EditCerlh & Akeys.cpp
& EditField.cpp # RichText.h
$# Textedit.h @ RichTextView.cpp void ArrayCtrl::Paint(Draws w) {
@ Text.cop @ Prompt.cpp LTIMING("Paint");

& Help.cop

$ DateTimeCtrl.h
& DateTimeCtrl.cpp
[&=Bar

Barh

& Bar.cpp

& MenuBar.cpp
& ToolBar.cpp

& ToolTip.cpp

$# StatusBar.h

& StatusBar.cpp
B> TabCtrl

$ TabCtrlh

& TabCtrl.cpp

B> TreeCtrl

TreeCtrlh

& TreeCtrl.cpp
[&> DigColor

DlgColor.h

& DlgColor.cpp
& ColorPopup.cpp
& ColorPusher.cpp
[B>FileSel

FileSel.h

& FileList,cpp

1

Size size = GetSize();
Rect r; =
r.bottom = ©;
bool hasfocus = HasFocusDeep();
int i = GetLineAt(sb);
int xs = -header.GetScroll();
int js;
for(js = 0; js < column.GetCount(); js++) {
int cw = header.GetTabwidth(js);
if ((xs + cw - vertgrid + (js == column.GetCount() -
break;
XS += cw;

1) »=8)

}
Color fc = Blend(SColorDisabled, SColorPaper);
if (1 IsNull(i))
while(i < GetCount()) {
r.top = GetLineY (i) - sbh;
if(r.top = size.cy) break;
r.bottom = r.top + GetLineCy(i);
int x = xs;
for(int j = js; j < column.GetCount(); j++) {
int cw = header.GetTabwidth(j);
int cm = column[jl.margin;
if(cm < 0)
cm = header.Tab(j).GetMargin();

if{xf> size.cx) break;
r.left = x;
0000010170 10 1 1000000 11

environment or users. Operating systems, such as Windows, macOS
and such are usually a combination of C++, C#, assembly and some
form of visual-based language. Games generally use C++ whilst web
pages can use a plethora of available languages such as HTML, Java,
Python and so on.

More general-purpose programming is used to create programs,
apps, software or whatever else you want to call them. They're
widely used across all hardware platforms and suit virtually every
conceivable application. Some operate faster than others and some
are easier to learn and use than others. Python is one such general-
purpose language.

Python is what's known as a High-Level Language, in that it ‘talks’
to the hardware and operating system using a variety of arrays,
variables, objects, arithmetic, subroutines, loops and countless
more interactions. Whilst it's not as streamlined as a Low-Level
Language, which can deal directly with memory addresses, call
stacks and registers, its benefit is that it's universally accessible
and easy to learn.

Python was created over twenty six years ago and has evolved to
become an ideal beginner’s language for learning how to program a
computer. It's perfect for the hobbyist, enthusiast, student, teacher
and those who simply need to create their own unique interaction
between either themselves or a piece of external hardware and the
computer itself.

Python is free to download, install and use and is available for Linux,
Windows, macOS, MS-DOS, OS/2, BeOS, IBM i-series machines, and
even RISC OS. It has been voted one of the top five programming
languages in the world and is continually evolving ahead of the
hardware and Internet development curve.

So to answer the question: why Python? Simply put, it's free, easy to
learn, exceptionally powerful, universally accepted, effective and a
superb learning and educational tool.

jlll//file: Invoke.java
import java.lang.reflect.*;

class Invoke {
pub]ic{static void main(string [] args) {
try
Class ¢ = Class.forName(args[0]);

?ﬁt?og ? = c.getMethod(args[1], new Class
Object ret = m.invoke(null, null);
system.out.printin(
"Invoked static method: " + args[1]
+ " of class: " + args[0]
+ " with no args\nResults: " + ret);

} catch (C1assNotFoundException e) {
// Class.forName() can't find the class
} catch (NosuchMethodExcept1on e2) {
// that method doesn't exist
} catch (I11eﬁa1AccessExcept1on e3) {
// we don't have permission to invoke that
method
} catch (InvocationTargetException e4) {
// an exception ocurred while invoking that
method
system.out.printin(
"Method threw an: + e4.
getTargetException());

Javais a powerful
language that'’s used in
web pages, set-top boxes,
TVs and even cars.

BASIC was once the starter language that early
8-bit home computer users learned.

print (HANGMAN[@])
attempts = len(HANGMAN) - 1

while (attempts != @ and "-" in word_guessed):
print(("\nYou have {} attempts remaining").format(attempts))
joined word = "".join(word_guessed)
print(joined_word)

try:
player_guess = str(input("\nPlease select a letter between A-Z" + "\n> ")).
except: # check valid input
print("That is not valid input. Please try again.”)
continue
else:
if not player_guess.isalpha(): # check the input is a letter. Also checks a
print("That is not a letter. Please try again.)
continue
elif len(player_guess) > 1: # check the input is only one letter
print("That is more than one letter. Please try again.")
continue
elif player guess in guessed letters: # check ses
print("You have already guessed that Teiter Plence try again.)
continue

etter hasn't been
else:
pass
guessed_letters.append(player_guess)
for letter in range(len(chosen_word)):
if player_guess == chosen_word[letter]:
word_guessed[letter] = player_guess # replace all letters in the chosen

if player_guess not in chosen_word:

Python is a more modern take on BASIC, it's easy to learn
and makes for an ideal beginner’s programming language.

www.pclpublications.com

Y s

Python on the Pi

If you're considering on which platform to install and use Python, then give some
thought to one of the best coding bases available: the Raspberry Pi. The Pi has many
advantages for the coder: it's cheap, easy to use, and extraordinarily flexible.

THE POWER OF PI

While having a far more powerful coding platform on which to write and test your code is ideal, it's not often feasible. Most of
us are unable to jump into a several hundred-pound investment when we're starting off and this is where the Raspberry Pi can

help out.

While having a far more powerful coding platform on which to
write and test your code is ideal, it's not often feasible. Most of us
are unable to jump into a several hundred-pound investment when
we're starting off and this is where the Raspberry Pi can help out.

The Raspberry Pi is a fantastic piece of modern hardware that

has created, or rather re-created, the fascination we once all had
about computers, how they work, how to code and foundation
level electronics. Thanks to its unique mix of hardware and custom
software, it has proved itself to be an amazing platform on which to
learn how to code; specifically, using Python.

While you're able, with ease, to use the Raspberry Pi to learn to
code with other programming languages, it's Python that has been
firmly pushed to the forefront. The Raspberry Pi uses Raspbian as
its recommended, default operating system. Raspbian is a Linux
0S, or to be more accurate, it's a Debian-based distribution of
Linux. This means that there's already a built-in element of Python
programming, as opposed to a fresh installation of Windows 10,
which has no Python-specific base. However, the Raspberry Pi
Foundation has gone the extra mile to include a vast range of
Python modules, extensions and even examples, out of the box.
So, essentially, all you need to do is buy a Raspberry Pi, follow the
instructions on how to set one up (by using one of our excellent
Raspberry Pi guides found at www.bdmpublications.com) and you
can start coding with Python as soon as the desktop has loaded.

Significantly, there’s a lot more to the Raspberry Pi, which makes

it an excellent choice for someone who is starting to learn how to
code in Python. The Piis remarkably easy to set up as a headless
node. This means that, with a few tweaks here and there, you're able
to remotely connect to the Raspberry Pi from any other computer,
or device, on your home network. For example, once you've set up
the remote connectivity options, you can simply plug the Piinto the
power socket anywhere in your house within range of your wireless
router. As long as the Pi is connected, you will be able to remotely
access the desktop from Windows or macOS as easily as if you were
sitting in front of the Pi with a keyboard and mouse.

Using this method saves a lot of money, as you don't need another
keyboard, mouse and monitor, plus, you won't need to allocate
sufficient space to accommodate those extras either. If you're pushed
for space and money, then for around £60, buying one of the many

18 www.pclpublications.com

kits available will provide the Pi with a pre-loaded SD card (with the
latest Raspbian OS), a case, power socket and cables, this is a good
idea as you could, with very little effort, leave the Pi plugged into the
wall under a desk, while still being able to connect to it and code.

The main advantage is, of course, the extra content that the
Raspberry Pi Foundation has included out of the box. The reason

for this is that the Raspberry Pi's goal is to help educate the

user, whether that's coding, electronics, or some other aspect of
computing. To achieve that goal the Pi Foundation includes different
IDEs for the user to compile Python code on; as well as both Python
2 and Python 3, there's even a Python library that allows you to
communicate with Minecraft.

There are other advantages, such as being able to combine Python
code with Scratch (an Object-Oriented programming language
developed by MIT, for children to understand how coding works) and
being able to code the GPIO connection on the Pi to further control
any attached robotics or electronics projects. Raspbian also includes
a Sense HAT Emulator (a HAT is a hardware attached piece of
circuitry that offers different electronics, robotics and motorisation
projects to the Pi), which can be accessed via Python code.

Consequently, the Raspberry Piis an excellent coding base, as well
as a superb project foundation. It is for these, and many other,
reasons we've used the Raspberry Pi as our main Python codebase
throughout this title. While the code is written and performed on a
Pi, you're also able to use it in Windows, other versions of Linux and
macOS. If the code requires a specific operating system, then, don’t
worry; we will let you know in the text.

Everything you need to learn to code with Python is

@ included with the OS!

®

There's no such
thing as too
much Pi!

Introduced on 24th June 2019, the Raspberry Pi 4 Model B was

a significant leap in terms of Pi performance and hardware
specifications. It was also one of the quickest models, aside from the
original Pi, to sell out.

With a new 1.5GHz, 64-bit, quad-core ARM Cortex-A72 processor, and
a choice of 1GB, 2GB, or 4GB memory versions, the Pi 4 is one-step
closer to becoming a true desktop computer. In addition, the Pi 4 was
launched with the startling decision to include dual-monitor support,
in the form of a pair of two micro-HDMI ports. You'll also find a pair

RASPBIAN BUSTER

In addition to releasing the Pi 4, the Raspberry Pi team also compiled
a new version of the Raspbian operating system, codenamed Buster.

In conjunction with the new hardware the Pi 4 boasts, Buster does
offer a few updates. Although on the whole it's very similarin
appearance and operation to the previous version of Raspbian. The
updates are mainly in-line with the 4K’s display and playback, giving the
Pi 4 a new set of graphical drivers and performance enhancements.

In short, what you see in this book will work with the Raspberry Pi
4 and Raspbian Buster!

Once set up, you can remotely connect to the Pi’s desktop
from any device/PC.

n

-]

)

[[eon——

-

of USB 3.0 ports, Bluetooth 5.0, and a GPU that's capable of handing
4K resolutions and OpenGL ES 3.0 graphics.

In short, the Pi 4 is the most powerful of the current Raspberry Pi

models. However, the different memory versions have an increased
cost. The 1GB version costs £34, 2GB is £44, and the 4GB version will
set you back £54. Remember to also factor in one or two micro-HDMI
cables with your order.

You can even test connected hardware with Python
remotely, via Windows.

®

www.pclpublications.com

E Getting Started>

Using Virtual Machines

A Virtual Machine allows you to run an entire operating system from within an app

on your desktop. This way, you're able to host multiple systems in a secure, safe and
isolated environment. In short, it's an ideal way to code.

Sounds good, but what exactly is a Virtual Machine (VM) and
how does it work?

The official definition of a virtual machine is ‘an efficient, isolated
duplicate of a real computer machine’. This basically means that a
virtual machine is an emulated computer system that can operate in
exactly the same way as a physical machine, but within the confines
of a dedicated virtual machine operator, or Hypervisor.

The Hypervisor itself, is an app that will allow you toinstall a
separate operating system, creating a virtual computer system
within itself, complete with access to the Internet, your home
network and so on.

The Hypervisor will take resources from the host system - your
physical computer, to create the virtual computer. This means that
part of your physical computer’s: memory, CPU, hard drive space
and other shared resources, will be set aside for use in the virtual
machine and therefore won't be available to the physical computer
until the hypervisor has been closed down.

' This resource overhead
can be crippling for the
physical machine if you
don't already have enough
memory, or hard drive
space available, or your
computer has a particularly
slow processor. While it's
entirely possible to run
virtual machines on as little
as 2GB of memory, it's not
advisable. Ideally, you will
need a minimum of 8GB
of memory (you can get
away with 4GB, but again,
your physical computer
will begin to suffer with
the loss of memory to the
virtual machine), at least 25
to 50GB of free space on

your hard drive and a quad-

core processor (again, you
can have a dual-core CPU,
but that can cause a bottleneck on your physical computer).

m Linux Mint 19.1 | Scripting| Python &C++

Coding for
Linux

Master Linux and expand your programming skills

Our Linux titles contain
steps on how toinstall a
hypervisor and OS.

The limit to how many different virtual machines you host on your
physical computer is restricted, therefore, by the amount of physical
system resources you can allocate to each, while still leaving enough
for your physical computer to operate on.

20 www.pclpublications.com

0 »55 SE0

You're able to install Linux, and code inside a virtual
machine on a Windows 10 host.

VIRTUAL OS

From within a hypervisor you're able to run a number of different
operating systems. The type of OS depends greatly on the
hypervisor you're running, as some are better at emulating a
particular system over others. For example, VirtualBox, a free and
easy to use hypervisor from Oracle, is great at running Windows
and Linux virtual machines, but isn’t so good at Android or macOS.
QEMU is good for emulating ARM processors, therefore ideal for
Android and such, but it can be difficult to master.

There are plenty of hypervisors available to try for free, with an
equal amount commercially available that are significantly more
powerful and offer better features. However, for most users, both
beginner and professional, VirtualBox does a good enough job.

Within a hypervisor, you're able to set up and install any of the
newer distributions of Linux, or if you feel the need, you're also able
to install some of the more antiquated versions. You can install early
versions of Windows, even as far back as Windows 3 complete with
DOS 6.22 - although you may find some functionality of the VM lost
due to the older drivers (such as access to the network).

With this in mind then, you're able to have an installation of Linux
Mint, or the latest version of Ubuntu, running in an app on your
Windows 10 PC. This is the beauty of using a virtual machine.
Conversely, if your physical computer has Linux as its installed
operating system, then with a hypervisor you're able to create a
Windows 10 virtual machine — although you will need to have a
licence code available to register and activate Windows 10.

Using virtual machines removes the need to dual-boot. Dual-booting
is having two, or more, physical operating systems installed on

the same, or multiple, hard drives on a single computer. As the
computer powers up, you're given the option to choose which OS
you want to boot into. While this sounds like a more ideal scenario
itisn’t always as straight forward as it sounds, as all the operating
systems that are booted into will have full access to the computer’s
entire system resources.

The problems with dual-booting come when one of the operating
systems is updated. Most updates cover security patching, or bug
fixing, however, some updates can alter the core - the kernel, of

the OS. When these changes are applied, the update may alter the
way in which the OS starts up, meaning the initial boot choice you
made could be overwritten, leaving you without the ability to access
the other operating systems installed on the computer. To rectify
this, you'll need to access the Master Boot Record and alter the
configuration to re-allow booting into the other systems. There's
also the danger of possibly overwriting the first installed OS, or
overwriting data and more often than not, most operating systems
don’t play well when running side-by-side. Indeed, while good, dual-
booting has more than its fair share of problems. In contrast, using a
virtual machine environment, while still problematic at times, takes
out some of the more nasty and disastrous aspects of using multiple
operating systems on a single computer.

Even old operating systems can be run inside a
virtual machine.

Virtual machines can be as simple, or as complex as your
needs require.

[WIRTE LT T TN D

<Using Virtual Machines m

ADVANTAGES FOR CODERS

For the coder, having a virtual machine setup offers many
advantages, the most popular being cross-platform code. Meaning if
you write code within Windows 10, then with an installation of a
Linux distro in a hypervisor, you're able to quickly and effortlessly
power up the virtual machine and test your code in a completely
different operating system. From this, you're able to iron out any
bugs, tweak the code so it works better on a different platform and
expand the reach of your code to non-Windows users.

The advantage of being able to configure a development
environment, in specific ways for specific projects, is quite
invaluable. Using a virtual machine setup greatly reduces the
uncertainties that are inherent to having multiple versions of
programming languages, libraries, IDEs and modules installed, to
support the many different projects you may become involved in as
a coder. Elements of code that ‘talk’ directly to specifics of an
operating system can easily be overcome, without the need to
clutter up your main, host system with cross-platform libraries,
which in turn may have an effect on other libraries within the IDE.

Another element to consider is stability. If you're writing code

that could potentially cause some instability to the core OS

during its development phase, then executing and testing that
code on a virtual machine makes more sense than testing it on your
main computer; where having to repeatedly reboot, or reset
something due to
the code’s
instabilities, can
become
inefficient and
just plain
annoying.

The virtual
machine
environment can
beviewed as a
sandbox, where
you're able to test
unsecure, or
unstable code without it causing harm, or doing damage, to your
main, working computer. Viruses and malware can be isolated
within the VM without infecting the main computer, you're able
to set up anonymity Internet use within the VM and you're able
to install third-party software without it slowing down your

main computer.

Coding in Python on the Raspberry
Pi Desktop OS inside a VM on
Windows 10!

GOING VIRTUAL

While you're at the early stages of coding, using a virtual machine
may seem a little excessive. However, it's worth looking into because
coding in Linux can often be easier than coding in Windows, as some
versions of Linux have IDEs pre-installed. Either way, virtualisation of
an operating system is how many of the professional and successful
coders and developers work, so getting used to it early on in your
skill set is advantageous.

To start, look at installing VirtualBox. Then consider taking a look

at our Linux titles, https://bdmpublications.com/?s=linux&post_
type=product, to learn how to install Linux in a virtual environment
and how best to utilise the operating system.

www.pclpublications.com

ﬁ Getting Started>

Creating a

Coding Platform

The term ‘Coding Platform’ can denote a type of hardware, on which you can code,
or a particular operating system, or even a custom environment that’s pre-built and
designed to allow the easy creation of games. In truth it's quite a loose term, as a
Coding Platform can be a mixture of all these ingredients, it's simply down to what
programming language you intend to code in and what your end goals are.

HARDWARE

Thankfully, coding at the
foundation level doesn’t
require specialist equipment,
or a top of the range, liquid
hydrogen-cooled PC. If you
own a computer, no matter
how basic, you can begin to learn how to code. Naturally, if
your computer in question is a Commodore 64 then you may
have some difficulty following a modern language tutorial, but
some of the best programmers around today started on an
8-bit machine, so there’s hope yet.

Access to the Internet is necessary to download, install and
update the coding development environment, alongside a
computer with either: Windows 10, macOS, or Linux installed.
You can use other operating systems, but these are the ‘big
three’ and you will find that most code resources are written
with one, or all of these, in mind.

22 www.pclpublications.com

Coding can be one of those experiences that sounds fantastic, but
to get going with it, is often confusing. After all, there's a plethora
of languages to choose from, numerous apps that will enable you
to code in a specific, or range, of languages and an equally huge
amount of third-party software to consider. Then you access the
Internet and discover that there are countless coding tutorials
available, for the language in which you've decided you want to
program, alongside even more examples of code. It's all a little too
much at times.

The trick is to slow down and, to begin with, not look too deeply
into coding. Like all good projects, you need a solid foundation
on which to build your skill and to have all the necessary tools
available to hand to enable you to complete the basic steps. This
is where creating a coding platform comes in, as it will be your
learning foundation while you begin to take your first tentative
steps into the wider world of coding.

SOFTWARE

In terms of software,
most of the development
environments - the tools
that allow you to code,
compile the code and
execute it - are freely
available to download and install. There are some specialist
tools available that will cost, but at this level they're not
necessary; so don't be fooled into thinking you need to purchase
any extra software in order to start learning how to code.

Over time, you may find yourself changing from the
mainstream development environment and using a collection
of your own, discovered, tools to write your code in. It’s all
personal preference in the end and as you become more
experienced, you will start to use different tools to get the
job done.

OPERATING SYSTEMS

Windows 10 is the most
used operating system in
the world, so it's natural
that the vast majority of
coding tools are written for Microsoft's leading operating
system. However, don't discount macOS and especially Linux.

macOS users enjoy an equal number of coding tools to their
Windows counterparts. In fact, you will probably find that a
lot of professional coders use a Mac over a PC, simply because
of the fact that the Mac operating system is built on top of
Unix (the command-line OS that powers much of the world's
filesystems and servers). This Unix layer lets you test programs
in almost any language without using a specialised IDE.

Linux, however, is by far one of the most popular and
important, coding operating systems available. Not only

does it have a Unix-like backbone, but also it's also free to
download, install and use and comes with most of the tools
necessary to start learning how to code. Linux powers most of
the servers that make up the Internet. It's used on nearly all of
the top supercomputers, as well as specifically in organisations
such as NASA, CERN and the military and it forms the base of
Android-powered devices, smart TVs and in-car systems. Linux,
as a coding platform, is an excellent idea and it can be installed
inside a virtual machine without ever affecting the installation
of Windows or macOS.

THE RASPBERRY PI

If you haven't already heard
of the Raspberry Pi, then
we suggest you head over
to www.raspberrypi.org, and
check it out. In short, the Raspberry
Piis a small, fully functional computer that comes with its own
customised Linux-based operating system, pre-installed with
everything you need to start learning how to code in Python,
C++, Scratch and more.

It's incredibly cheap, costing around £35 and allows you to utilise
different hardware, in the form of robotics and electronics
projects, as well as offering a complete desktop experience.
Although not the most powerful computing device in the world,
the Raspberry Pi has a lot going for it, especially in terms of
being one of the best coding platforms available.

YOUR OWN CODING PLATFORM

Whichever method you choose, remember that your coding
platform will probably change, as you gain experience and favour
one language over another. Don't be afraid to experiment along
the way, as you will eventually create your own unique platform
that can handle all the code you enterinto it.

<Creating a Coding Platform m

VIRTUAL MACHINES

Avirtual machine is a piece of software that allows you toinstall a
fully working, operating system within the confines of the software
itself. The installed OS will allocate user-defined resources from the
host computer, providing memory, hard drive space etc., as well as
sharing the host computer’s Internet connection.

The advantage of a virtual S

machine is that you can work F- _3*
with Linux, for example, without % Y =S
it affecting your currently L
installed host OS. This means
that you can have Windows 10
running, launch your virtual machine client, boot into Linux and use
all the functionality of Linux while still being able to use Windows.

s

=

-

This, of course, makes it a fantastic coding platform, as you can
have different installations of operating systems running from
the host computer while using different coding languages.
You can test your code without fear of breaking your host OS
and it's easy to return to a previous configuration without the
need to reinstall everything again.

Virtualisation is the key to most big companies now. You will
probably find, for example, rather than having a single server
with an installation of Windows Server, the T team have
instead opted for a virtualised environment whereby each
Windows Server instance is a virtual machine running from
several powerful machines. This cuts down on the number
of physical machines, allows the team to better manage
resources and enables them to deploy an entire server
dedicated to a particular task in a fraction of the time.

MINIX NEO N42C-4

The NEO N42C-4 is an extraordinarily
small computer from mini-PC developer,
MINIX. Measuring just 139 x 139 x 30mm, this Intel N4200 CPU
powered, Windows 10 Pro pre-installed computer is one of the
best coding platforms we've come across.

The beauty, of course, lies in the fact that with increased storage
and memory available, you're able to create a computer that can
easily host multiple virtual machines. The virtual machines can
cover Linux, Android and other operating systems, allowing you
to write and test cross-platform code without fear of damaging,
or causing problems, with other production or home computers.

The MINIX NEO N42C-4 starts at around £250, with the base
32GB eMMC and 4GB of memory. You'll need to add another
hundred and fifty, or so, to increase the specifications, but
consider that a license for Windows 10 Pro alone costs £219
from the Microsoft Store and you can begin to see the benefits
of opting for a more impressive hardware foundation over the
likes of the Raspberry Pi.

www.pclpublications.com

=
=
(@}
=
f°)

www.pclpublications.com

24

Crtoris 3

Hello,
\elile

Getting started with Python may seem a little daunting at
first, but, thankfully, the language has been designed with
simplicity in mind. Like most things, you need to start slow,
master the basics, learn how to get a result, and how to get
what you want from the code.

This section covers numbers and expressions, user input,
conditions and loops and the types of errors you will
undoubtedly come across in your time with Python: the core
foundations of good coding and Python code.

www.pclpublications.com 25

m Hello, World>

Equipment You
Will Need

You can learn Python with very little hardware or initial financial investment. You

don't need an incredibly powerful computer and any software that's required is
freely available.

WHAT WE'RE USING

Thankfully, Python is a multi-platform programming language available for Windows, macOS, Linux, Raspberry Pi and more. If
you have one of those systems, then you can easily start using Python.

|] COMPUTER

Obviously you're going to need a computerin order to learn how to program in
Python and to test your code. You can use Windows (from XP onward) on either a 32
or 64-bit processor, an Apple Mac or Linux installed PC.

|] ANIDE

An IDE (Integrated Developer Environment) is used to enter and execute Python
code. It enables you to inspect your program code and the values within the code, as
well as offering advanced features. There are many different IDEs available, so find
the one that works for you and gives the best results.

|] PYTHON SOFTWARE

macOS and Linux already come with Python preinstalled as part of the operating
system, as does the Raspberry Pi. However, you need to ensure that you're running
the latest version of Python. Windows users need to download and install Python,
which we'll cover shortly.

| | TEXT EDITOR

Whilst a text editor is an ideal environment to enter code into, it's not an absolute
necessity. You can enter and execute code directly from the IDLE but a text editor,
such as Sublime Text or Notepad++, offers more advanced features and colour coding
when entering code.

| | INTERNET ACCESS

Python is an ever evolving environment and as such new versions often introduce
new concepts or change existing commands and code structure to make it a more
efficient language. Having access to the Internet will keep you up-to-date, help you
out when you get stuck and give access to Python's immense number of modules.

D TIME AND PATIENCE

Despite what other books may lead you to believe, you won't become a programmer
in 24-hours. Learning to code in Python takes time, and patience. You may become
stuck at times and other times the code will flow like water. Understand you're learning
something entirely new, and you will get there.

26 www.pclpublications.com

THE RASPBERRY PI

(Equipment You Will Need m

Why use a Raspberry Pi? The Raspberry Pi is a tiny computer that's very cheap to purchase, but offers the user a fantastic learning
platform. Its main operating system, Raspbian, comes preinstalled with the latest Python along with many modules and extras.

RASPBERRY PI

The Raspberry Pi 5 Model is the latest version,
incorporating a more powerful CPU, a choice of 4GB or
8GB memory versions and Wi-Fi and Bluetooth support.
You can pick up a Pi 5 from around £59, increasing up to
£79 for the 8GB memory version, or as part of a kit
depending on the “Pi model you're interested in.

RASPBIAN

The Raspberry Pi's main operating system is a Debian-based
Linux distribution that comes with everything you need in
asimple to use package. It's streamlined for the Piandis an
ideal platform for hardware and software projects, Python
programming and even as a desktop computer.

(1] LY PSP [

>

$eesenes

FUZE PROJECT

The FUZE is a learning environment built on the latest model &
of the Raspberry Pi. You can purchase the workstations that :
come with an electronics kit and even a robot arm for you :
to build and program. You can find more information on the 5
FUZE at www.fuze.co.uk. :

BOOKS

We have several great Raspberry Pi titles available via www.
pclpublications.com. Our Pi books cover how to buy your
first Raspberry Pi,

setit up and use

it; there are some great step-
by-step project examples
and guides to get the most
from the
Raspberry
Pi too.

¥ Slear Fyy
O

www.pclpublications.com

D) ovoves)

Getting to
Know Python

Python is the greatest computer programming language ever created. It enables

you to Fully harness the power of a computer, in a language that's clean and easy

to understand.

WHAT IS PROGRAMMING?

It helps to understand what a programming language is before you try to learn one, and Python is no different. Let’s take a
look at how Python came about and how it relates to other languages.

PYTHON

A programming language

is a list of instructions that

a computer follows. These
instructions can be as simple
as displaying your name

or playing a music file, or

as complex as building a
whole virtual world. Python
is a programming language
conceived in the late 1980s
by Guido van Rossum

at Centrum Wiskunde &
Informatica (CWI) in the
Netherlands as a successor to
the ABC language.

father of Python.

Guido van Rossum, the

28

www.pclpublications.com

PROGRAMMING RECIPES

Programs are like recipes for computers. A
recipe to bake a cake could go like this:

Put 100 grams of self-raising flour in a bowl.
Add 100 grams of butter to the bowl.

Add 100 millilitres of milk.

Bake for half an hour.

B) - Sublime Text
File Edit Selection Find View Goto Tools Project Preferences Help

e |
1 |put 10@ grams of self-raising flour in a bowl.
2 Add 1ee grams of butter to the bowl.
3 Add 1@@ millilitres of milk.
4 Bake for half an hour.

CODE

Just like a recipe, a program consists of instructions that you follow

[cakepy ChUsesthucyhDropbodd Acionicakepy 27.1)
File [dit Formet Run Options Window Help
class Cake (object):
et _ init_ (self):
Self.ingredients = []

4 i % i & ief cook(self,ingredients):
in order. A program that describes a cake might run like this: pEIDE WPk lng cabe .. F
sake = Cake()
l bowl = [] -
bowl = []
l flour = 100 flour - 100
butter = 50
I butter = 50 milk - 100
l R = bowl .append ([flour,butter, milk])

l bowl . append ([flour,butter,milk])

l cake . cook (bowl)

cake . cook (bowl)

PROGRAM COMMANDS

You might not understand some of the Python commands, like bowl.append and cake.cook(bowl).
The first is a list, the second an object; we'll look at both in this book. The main thing to know is
that it's easy to read commands in Python. Once you learn what the commands do, it's easy to

figure out how a program works.

Python 3.4.2 Shell E
Elle Edit Shell Debug Options Windows Help

o x cake py - /home/pi/Dacuments/cake py (34.2) _oox

|| Ele Edt Format Run Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[6CC 4.9.1] on linux

Type "copyright”. "credits” or "license()" for more information.
>>> RESTART

55>
Baking cake. ..
5>

([c1ass Cake(object):
| def _init_(self):
I Self.ingredients =]
ief cook(self, ingredients):
| print (“Baking cake..."

I
| cake=Cake()

butter = 50
milk = 100
bowl.append([flour. butter, milk])

cake. cook(bowl)

HIGH-LEVEL LANGUAGES

Computer languages that are easy to read are known as “high-level”.
This is because they fly high above the hardware (also referred to as
“the metal”). Languages that “fly close to the metal,” like Assembly,
are known as “low-level”. Low-level languages commands read a bit
like this:msg db ,0xa len equ $ - msg.

3 Wi ¥ [
€ 50 (6 o *| =@ a -

U, [P a

High-level programming language

'WIKIPEDIA
BRI et o rckpuss

PYTHON 3 VS PYTHON 2

(Getting to Know Python m

ZEN OF PYTHON

Python lets you access all the power of a computer in a language
that humans can understand. Behind all this is an ethos called “The
Zen of Python.” This is a collection of 20 software principles that
influences the design of the language. Principles include “Beautiful
is better than ugly” and “Simple is better than complex.” Type
import this into Python and it will display all the principles.

Python 3.4.2 Shell — T ‘

File Edit Shell Debug Options Windows Help “

Python 3.4.2 (default, Oct 19 2014, 13:31:11) A
[GCC 4.9.1] on linux ‘

Type “"copyright", "credits" or “"license()" for more information.
>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.
Although practicality beats purity.

In a typical computing scenario, Python is complicated somewhat by the existence of two active versions of the language:

Python 2 and Python 3.

WORLD OF PYTHON Python 3.7 is the newest release
of the programming language.
However, if you dig a little deeper into the Python site, and investigate
Python code online, you will undoubtedly come across Python 2.
Although you can run Python 3 and Python 2 alongside each other; it's
not recommended. Always opt for the latest stable release as posted
by the Python website.

Downloads Documentation Community Success Stories

All releases
Download for Windows
Source code
Python 3.7.0
Windows

Note that Python 3.5+ cannot be used on Windows XP

| MacOSX or earlier.

Not the OS you are looking for? Python can be used on
Other Platforms

many operating systems and environments.

PYTHON 2.X So why two? Well, Python 2 was originally
launched in 2000 and has since then
adopted quite a large collection of modules, scripts, users, tutorials
and so on. Over the years Python 2 has fast become one of the first
go to programming languages for beginners and experts to code
in, which makes it an extremely valuable resource.

[® Python 2.7.13 Shell - O

File Edit Shell Debug Options Window Help

Python 2.7.13 (v2.7.13:a06454blafal, Dec 17 2016, 20:42:59) [MSC v.1500 32 bit (;I
Intel)] on win32

Type "copyright™, "credits" or "license()" for more information.

>>>

PYTHON 3.X In 2008 Python 3 arrived with several new
and enhanced features. These features
provide a more stable, effective and efficient programming
environment but sadly, most (if not all) of these new features are
not compatible with Python 2 scripts, modules and tutorials. Whilst
not popular at first, Python 3 has since become the cutting edge of
Python programming.

[@ python 3.6.1 Shell ul

File Edit Shell Debug Options Window Help

Python 3.6.1 (v3.6,1:69c0dbS, Mar 21 2017, 17:54:52) [MSC v.1900 32 bit (Intel)]
on win32

Type "copyright", "credits" or "license()" for more information.

>>>

3.X WINS Python 3’s growing popularity has meant that
it’s now prudent to start learning to develop
with the new features and begin to phase out the previous version.
Many development companies, such as SpaceX and NASA use
Python 3 for snippets of important code.

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1] on linux

Type "copyright”, "credits” or "license()" for more information.
>>> print ("Python 3.x is AWESOME!™)

Python 3.x is AWESOME!

>>>

www.pclpublications.com

E Hello, World>

How to Set Up
Python in Windows

Windows users can easily install the latest version of Python via the main Python

Downloads page. Whilst most seasoned Python developers may shun Windows as the
platform of choice for building their code, it's still an ideal starting point for beginners.

INSTALLING PYTHON 3.X

Microsoft Windows doesn’t come with Python preinstalled as standard, so it will be necessary to install it yourself manually.

ThankFfully, it's an easy process to follow.

STEP 1 Start by opening your web browser to www.python.
org/downloads/. Look for the button detailing the
Download link for Python 3.x. Python is regularly updated, changing
the last digit for each bug fix and update. Therefore, don't worry if
you see Python 3.8, or more, as long as it's Python 3, the code in this
book will work fine.

& python

Aboul

(.- JES

Downloads Success Stories News Evel

PO |

Documentation Community

Download the latest version for Windows

Download Python 3.8.0

STEP 2 Click the Download button for version 3.x and
save the file to your Downloads folder. When the
file is downloaded, double-click the executable and the Python
installation wizard will launch. From here, you have two choices:
Install Now and Customise Installation. We recommend opting for
the Customise Installation link.

STEP 3 Choosing the Customise option allows you to
specify certain parameters, and whilst you may
stay with the defaults, it's a good habit to adopt as, sometimes (not
with Python, thankfully), installers can include unwanted additional
features. On the first screen available, ensure all boxes are ticked
and click the Next button.

% Python 3.8.0 (32-bit) Setup — X

Optional Features
Documentation
Installs the Python documentation file.
pip
Installs pip, which can download and install other Python packages.
M td/tk and IDLE
Installs tkinter and the IDLE development environment.
Python test suite

Installs the standard library test suite,

+ L

py launcher [for all users (requires elevation)

Upgrades the global 'py’ launcher from the previous version.

puthon
STEP 4 The next page of options include some interesting
additions to Python. Ensure the Associate file with
Python, Create Shortcuts, Add Python to Environment Variables,
Precompile Standard Library and Install for All Users options are

ticked. These make using Python later much easier. Click Install when
you're ready to continue.

© Python 3.8.0 (32-bit) Setup = X
} Install Python 3.8.0 (32-bit)
‘ — o

Select Install Now to install Python with default settings, or choose
Customize to enable or disable features.

® Install Now
C:\Users\david\AppData\Local\Programs\Python\Python38-32

Includes IDLE, pip and documentation
Creates shortcuts and file associations

—> Customize installation
Choese location and features

outhon

30 www.pclpublications.com

% Python 3.8 (32-bit) Setup = X

Advanced Options

Install for all users

[Associate files with Python (requires the py launcher)
[Create shortcuts for installed applications

Add Python to environment variables

[Precompile standard library

+ L

[Download debugging symbols
[J Download debug binaries (requires VS 2015 or later)

Customize install location
C:\Program Files (x86)\Python38-32

Browse

nuthon

STEP 5 You may need to confirm the installation with
the Windows authentication notification. Simply
click Yes and Python will begin to install. Once the installation is
complete, the final Python wizard page will allow you to view the
latest release notes and follow some online tutorials.

C Python 3.8.0 (32-bit) Setup B X

A

python

Setup was successful

Special thanks to Mark Hammond, without whose years of
freely shared Windows expertise, Python for Windows would
still be Python for DOS.

New to Python? Start with the online tutorial and
documentation.

See what's new in this release.

Close

windows

STEP 6 Before you close the install wizard window
however, it's best to click on the link next to the
shield detailed Disable Path Length Limit. This will allow Python
to bypass the Windows 260 character limitation, enabling you to
execute Python programs stored in deep folders arrangements.
Click Yes again, to authenticate the process, then you can Close the
installation window.

® Disable path length limit
Changes your machine configuration to allow programs, including Python, to
e 260 character "MAX_PATH" limitation.

Close

STEP 7 Windows 10 users can now find the installed Python
3.x within the Start button Recently Added section.
The first link, Python 3.x (32-bit) will launch the command line
version of Python when clicked (more on that in a moment). To open
the IDLE, type IDLE into Windows start.

Al Apps

Documents Email Web More v

Best match

.. IDLE (Python 3.8 32-bit)
App

ares IDLE (Python 3.8 32-bit)

= idle.bat >
Search the web

L idle - see web results > ! Open

Documents (12+) Run as administrator
Folders (2+) 1" Open file location
Store (2) = Pin to Start

= Pin to taskbar

] uninstall

<How to Set Up Python in Windows a

STEP 8 Clicking on the IDLE (Python 3.x 32-bit) link will launch

the Python Shell, where you can begin your Python
programming journey. Don’t worry if your version is newer, as long
as it's Python 3.x our code works inside your Python 3 interface.

.
(& =

File Edit Shell Debug Options Window Help

Python 3 (tags. £a919fd, Oct 14 2019, 19:21:23) [MSC v.1916 32 bit (In
tel)] on win32

Type "help", "copyright", "credits" or "license()" for more information.

STEP 9 If you now click on the Windows Start button again,
and this time type: CMD, you'll be presented with
the Command Prompt link. Click it to get to the Windows command
line environment. To enter Python within the command line, you
need to type: python and press Enter.

The command line version of Python works in

much the same way as the Shell you opened in
Step 8; note the three left-facing arrows (>>>). Whilst it's a perfectly
fine environment, it's not too user-friendly, so leave the command
line for now. Enter: exit () to leave and close the Command
Prompt window.

www.pclpublications.com 31

Hello, World>

How to Set Up
Python in Linux

While the Raspberry Pi's operating system contains the latest, stable version of Python,

other Linux distros don’'t come with Python 3 pre-installed. If you're not going down
the Pi route, then here's how to check and install Python for Linux.

PYTHON PENGUIN

Linux is such a versatile operating system that it's often difficult to nail down just one-way of doing something. Different
distributions go about installing software in different ways, so for this particular tutorial we will stick to Linux Mint.

STEP 1 First you need to ascertain which version of Python
is currently installed in your Linux system. To begin
with, drop into a Terminal session from your distro’s menu, or hit the
Ctrl+Alt+T keys.

david@david-Mint: ~

View Search Terminal

-mint:~$ i

File Edit Help

david@david

STEP 2 Next, enter: python --version into the Terminal
screen. You should have the output relating to
version 2.x of Python in the display. Most Linux distro come with
both Python 2 and 3 by default, as there's plenty of code out there
still available for Python 2. Now enter: python3 --version.

david@david-Mint: ~

File Edit View Search Terminal Help

$ python --version

$ python3 --version

s 1

STEP In our case we have both Python 2 and 3 installed.
As long as Python 3.x.x isinstalled, then the code in
our tutorials will work. It's always worth checking to see if the distro
has been updated with the latest versions, enter: sudo apt-get
update && sudo apt-get upgrade to update the system.

P/thon 3.6 7
avid-

Mint:

david@david-Mint: ~

File Edit View Search Terminal Help

$ python --version
| $ python3 --version
a7

Mint:~$ sudo apt-get update && sudo apt-get upgrade
sword for david:

www.pclpublications.com

STEP 4 Once the update and upgrade completes, enter:
python3 --version again to seeif Python 3.xis

updated, or even installed. As long as you have Python 3.x, you're
running the most recent major version, the numbers after the 3.
indicate patches plus further updates. Often they're unnecessary,
but they can contain vital new elements.

File Edit View Search Terminal Help

Need to get 1,409 kB of archives.

After this operation, 23.6 kB of additional disk space will be used.

Do you want to continue? [Y/n] y

Get:1 http://archive.ubuntu.com/ubuntu bionic-updates/main amd64 libasound2 amd6
41 Subuntu@.2 [359 kB]

Get:2 http://archive.ubuntu.com/ubuntu bionic-updates/main amd64 libasound2-data
all 1.1.3-5ubuntu@.2 [36.5 kB]

Get:3 http://archive.ubuntu.com/ubuntu bionic-updates/main amd64 linux-libc-dev
amd64 4.15.0-44.47 [1,013 kB]

Fetched 1,409 kB in 0s (3,023 kB/s)

(Reading database ...
Preparing to unpack .
Unpacking libasound

directories mrrently installed.)
.3-5ubuntue.2 arvdﬁ-i.deb
amd64 (1.1.3- Subuntue 2) over 1.3-5ubuntue.1) ...
Preparing to unpac /libasound2-data 1.1.3- 5ubuntu0.27all.deh
Unpacking libasoun ta (1.1.3-5ubuntu@.2) over (1.1.3-5ubu 1)
Preparing to unpack . inux-libc-dev 4.15. 44 47 amd64.deb
Unpacking linux-libc-dev:amd64 < -4 r (4.15.0-43.46) ...
Setting up libasound2-data (1.1

STEP 5

However, if you want the latest, cutting edge
version, you'll need to build Python from source.
Start by entering these commands into the Terminal:

sudo apt-get install build-essential checkinstall
sudo apt-get install libreadline-gplv2-dev
libncursesw5-dev libssl-dev libsglite3-dev tk-dev
libgdbm-dev libc6-dev libbz2-dev

david@david-Mint: ~ s O

File Edit View Search Terminal Help

:~$ sudo apt-get install build-essential checkinstall

Peadlng package lists... Done
Building dependency tlee
Reading state information... Done
build-essential is already the newest version (12.4ubuntul).
The following NEW packages will be installed

checkinstall
0 to upgrade, 1 to newl
Need to get 97.1 kB o
After this operation, 438 kB of additional disk space will be used.
Do you want to continue? [Y/n] y

, @ to remove and 3 not to upgrade.

Open up your Linux web browser and go to the
Python download page: https://www.python.org/

downloads. Click on the Downloads, followed by the button under
the Python Source window. This opens a download dialogue box,
choose a location, then start the download process.

& python

About

Opening Python-3.7.2.tar.xz
You have chosen to open:
Python-3.7.2.tarxz

which is: XZ archive (16.3 MB)
from: https:/Awww.python.org

Download

What should Firefox do with this file?

Hello, I'm Python! Openwith | Archive Manager (default) v

Save File

What ur
Python

name?
Cancel

Hi, Py

STEP 7 In the Terminal, go to the Downloads folder
by entering: cd Downloads/. Then unzip the

contents of the downloaded Python source code with: tar -xvf
Python-3.Y.Y.tar.xz (replace the Y's with the version numbers
you've downloaded). Now enter the newly unzipped folder with: cd
Python-3.Y.Y/.

g jects/clinic/floatobject.c.h
.2/0bjects/clinic/funcobject.c.h

.7.2/0bjects/clinic/moduleobject.c.h
.2/0bjects/clinic/odictobject.c.h

. jects/methodobject.c
.7.2/0bjects/tupleobject.c
.7.2/0bjects/obmalloc.c
.7.2/0bjects/object.c
.7.2/0bjects/abstract.c
.7.2/0bjects/listobject.c
.7.2/0bjects/bytes methods.c

.2/0bjects/dictnotes. txt

.2/0bjects/typeslots.inc

4 $ cd Python-3.7.2/
$

Within the Python folder, enter:

./configure
sudo make altinstall

This could take a while, depending on the speed of your computer.
Once finished, enter: python3 .7 --version to checkthe latest
installed version. You now have Python 3.7 installed, alongside older
Python 3.x.x and Python 2.

5 g vetIeT Cone g g
checking for --with-ssl-default-suites
configure: creating ./config.status
g.status: creating Makefile.pre
.status: creating Misc/python.pc
g.status: creating Misc/python-config.sh
.status: creating Modules/ld so aix
.status: creating pyconfig.h
creating Modules/Setup
creating Modules/Setup.local
creating Makefile

If you want a release build with all stable optimizations active (PGO, etc),
please run ./configure --enable-optimizations

avid-Mint: $ sudo make altinstall

<How to Set Up Python in Linux

STEP 9

sudo apt-get install idle3

For the GUI IDLE, you'll need to enter the following
command into the Terminal:

The IDLE can then be started with the command: idle3. Note, that
IDLE runs a different version to the one you installed from source.

david@david-Mint: ~/Downloads/Python-3.7.2

File Edit View Search Terminal Help

@david-Mint:
Reading package lists...
Building dependency tree
Reading state information... Done
The following additional packages will be installed:

blt idle idle-python3.6 python3-tk tk8.6-blt2.5
Suggested packages:

blt-demo tix python3-tk-dbg
The following NEW packages will be installed

blt idle idle-python3.6 idle3 python3-tk tk8.6-blt2.5
0 to upgrade, 6 to newly install, © to remove and 3 not to upgrade.
Need to get 938 kB of archives.
After this operation, 4,221 kB of additional disk space will be used.
Do you want to continue? [Y/n] l

$ sudo apt-get install idle3

Done

STEP You'll also need PIP (Pip Installs Packages), which is
a tool to help you install more modules and extras.

Enter: sudo apt-get install python3-pip
Once PIPis installed, check for the latest update with:
pip3 install --upgrade pip

When complete, close the Terminal and Python 3.x will be available
via the Programming section in your distro’s menu.

id-Mint: ~/D loads/Python-3.7.2 &

File Edit View Search Terminal Help

dav v
Reading package lists...
Building dependency tree
Reading state information... Done
The following additional packages will be installed:

python-pip-whl python3-distutils python3-1lib2to3
Recommended packages:

python3-dev python3-setuptools python3-wheel
The following NEW packages will be installed

python-pip-whl python3-distutils python3-lib2toe3 python3-pip
0 to upgrade, 4 to newly install, © to remove and 3 not to upgrade.
Need to get 1,984 kB of archives.
After this operation, 4,569 kB of additional disk space will be used.
Do you want to continue? [Y/n]

$ sudo apt-get install python3-pip
Done

PYTHON ON macOS

Installation of Python on macOS can be done in much the
same way as the Windows installation. Simply go to the Python
webpage, hover your mouse pointer over the Downloads

link and select Mac OS X from the options. You will then be
guided to the Python releases for Mac versions, along with the
necessary installers for macOS 64-bit for OS X 10.9 and later.

www.pclpublications.com 33

ﬁ Hello, World>

Starting Python for
the First Time

The Raspberry Pi offers one of the best all-round solutions on which to learn and code,

in particular, Python. Raspbian, the Pi's recommended OS, come pre-installed with the
latest stable version of Python 3, which makes it a superb coding platform.

STARTING PYTHON

Everything you need to begin programming with Python is available from the Raspberry Pi desktop. However, if you want,
drop into the Terminal and update the system with: sudo apt-get update.

STEP 1 With the Raspbian desktop loaded, click on the STEP 3 For example, in the Shell enter: 2+2
Menu button followed by Programming > Python After pressing Enter, the next line displays the
3 (IDLE). This opens the Python 3 Shell. Windows and Mac userscan answer: 4. Basically, Python has taken the ‘code’ and produced the
find the Python 3 IDLE Shell from within the Windows Start button relevant output.

menu and via Finder.

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help [
Python 3.4.2 (default, Oct 19 2014, 13:31:11) —

$O msO0
TN

[6CC 4.9.1] on linux |
Type "copyright”, "credits” or "license()" for more information. |
>>> 242

>> | I‘

STEP 2 The Shell is where you can enter code and see the STEP 4 The Python Shell acts very much like a calculator,
responses and output of code you've programmed since code is basically a series of mathematical
into Python. This is a kind of sandbox, where you're able to try out interactions with the system. Integers, which are the infinite

some simple code and processes. sequence of whole numbers can easily be added, subtracted,
multiplied and so on.

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help Python 3.4.2 Shell - im] &

Python 3.4.2 (default, Oct 19 2014, 13:31:11) File Edit Shell Debug Options Windows Help
[GCC 4.9.1] on linux

Type "copyright", "credits" or "license()" for more information. Python 3.4.2 (default, Oct 19 2014, 13:31:11)

>>> [GCC 4.9.1] on linux

Type "copyright”, "credits” or “license()" for more information.
>>> 242

4

L4

14

>>> 23453+64545522
64568975

>>> 08778642342-12343
98778629999

>>> 1287437%43534
56047282358

>> |

>>> 8+6 |‘

j—

34 www.pclpublications.com

STEP 5

print (“Hello everyone!”)

While that's very interesting, it's not particularly
exciting. Instead, try this:

Just enter itinto the IDLE as you've done in the previous steps.

Python 3.4.2 Shell =R E X
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al
[GCC 4.9.1] on linux

Type "copyright”, "credits" or "license()" for more information.
>>> 2+2

4

>>> 8+6 \
14

>>> 23453+64545522 '
64568975

>>> 98778642342-12343
98778629999

>>> 1287437%43534
56047282358

>>> print(“Hello everyone!™)
Hello everyone! \

>>>

ﬂ

STEP 6 This s a little more like it, since you've just produced
your first bit of code. The Print command is fairly
self-explanatory, it prints things. Python 3 requires the brackets as
well as quote marks in order to output content to the screen, in this
case the ‘Hello everyone!’ bit.

>>> print(“Hello everyone!™)
Hello everyone!
»>>> |

STEP 7 You may have noticed the colour coding within
the Python IDLE. The colours represent different

elements of Python code. They are:

Black — Data and Variables
Green - Strings

Purple — Functions
Orange — Commands

Blue — User Functions
Dark Red — Comments
Light Red — Error Messages

IDLE Colour Coding

Colour Use for Examples
Black Data & variables 23.6 area
Green Strings "Hello World"
Purple Functions len() print()
Orange Commands if for else

Blue User functions get_area()

Dark red Comments #Remember VAT

Light red Error messages SyntaxError:

<Starting Python for the First Time

STEP 8 The Python IDLE is a configurable environment. If
you don't like the way the colours are represented,
then you can always change them via Options > Configure IDLE and
clicking on the Highlighting tab. However, we don’t recommend
that, as you won’t be seeing the same as our screenshots.

Python 3.4.2 (default, Oct 19 2014, 13:31:11) 1 .
[6CC 4.9.1] on linux ¢

Type "copyright”, "credits” or "license()" for more information. |
>>> 2+2

4 IDLE Preferences = x

Lr a0 -
14 Fonts/Tabs | Highlighting | Keys | General |

>: 4 454¢

ot - Custom Highlighting Highlighting Theme

>>> 98778642342-12343 Select : .

98778629999
>>> 1287437%43534
56047282358

Choose Colour for : ‘s @ Bulltn Theme

>>> print("Hello everyone!") Normal Text -
Hello everyone! e =

= Foreground (~ Background

[Fyou can click here -
l#to choose items

var3 = list(None)

[NEFFSE cursor
shell stdout stderr

Save as New Custom Theme

STEP 9 Just like most programs available, regardless of the
operating system, there are numerous shortcut
keys available. We don’t have room for them all here but within the
Options > Configure IDLE and under the Keys tab, you can see a list
of the current bindings.

IDLE Preferences

Fonts/Tabs | Highlighting | Keys | General |

Key Set
% Use a Built-in Key Set IDLE Classic Windows —

\ Save as New Custom Key Set |

Custom Key Bindings
Action - Key(s)
beginning-of-ine - <Key-Home> At
center-insert - <Control-Key> <Control-ey-L>
ch. K

J : <Alt-Key-U> <
icheck-module - <Alt-Key->
e log saliadcins - it)

I-Key-q> <Ci
iclosewindow - <Alt-Key-F4> <Meta-Key-F4>
c gion - <Alt-Key-3>
copy - <Control-Key-c> <Control-Key-C>
cut - <Control-Key> <Control-KeyX>

dent-reglon - <Controt

k| apply } Cancel

STEP 10 The Python IDLE is a power interface and one
that’s actually been written in Python using one
of the available GUI toolkits. If you want to know the many ins and
outs of the Shell, we recommend you take a few moments to view
www.docs.python.org/3/library/idle.html, which details many of
the IDLE's features.

25.5. IDLE
Source coda: L

IDLE & Python's tyeted Devolopmeni and Loarnig Erveoament

1DLE has e foowng e

25.5.1. Menus

DLE has e

Estor wndow 15 Fid s, o

e

255.1.1. File menu (Shell and Editor)

NowFio
Creat o new fl oitng wedow

open
Open an axseng fh win an Open daiog

www.pclpublications.com

D) otoves)

Your First Code

Essentially, you've already written your first piece of code with the ‘print(“Hello

everyone!”)’' function from the previous tutorial. However, let's expand that and look at
entering your code and playing around with some other Python examples.

PLAYING WITH PYTHON

With most languages, computer or human, it's all about remembering and applying the right words to the right situation.
You're not born knowing these words, so you need to learn them.

STEP 1 IFyou've closed Python 3 IDLE, reopenitin
whichever operating system version you prefer. In

the Shell, enter the familiar following:
print (“Hello”)
Pythor{3 4.2 Shell

File Edit Shell Debug Options Windows Help
Python 3.4.2 (default, Oct 19 2014, 13:31:11) JF
|

[GCC 4.9.1] on linux

Type “copyright", “"credits" or “"license()" for more information.
>>> print("Hello")

Hello

> | l

STEP 2 Just as predicted, the word Hello appears in the
Shell as blue text, indicating output from a string.

It's fairly straightforward and doesn’t require too much explanation.
Now try:

print (“2+2")

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help '

Python 3.4.2 (default, Oct 19 2014, 13:31:11) A
[GCC 4.9.1] on linux

Type “copyright“, “credits" or “"license()" for more information.
>>> print("Hello™)

Hello

>>> print("2+2")

2+2

> |

36 www.pclpublications.com

STEP 3 You can see that instead of the number 4, the
output is the 2+2 you asked to be printed to the
screen. The quotation marks are defining what's being outputted
to the IDLE Shell; to print the total of 2+2 you need to remove
the quotes:

print (2+2)

g =
Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) | al
[GCC 4.9.1] on linux

Type “copyright“, “credits" or “license()" for more information.
>>> print("Hello")

Hello

>>> print("2+2")

2 ‘

>>> print(2+2)
4

>>>
>>>

STEP 4 You can continue as such, printing 2+2, 464+2343
and so on to the Shell. An easier way is to use a

variable, which is something we will cover in more depth later. For
now, enter:

a=2

e

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) =
[GCC 4.9.1] on linux

Type “copyright”, “"credits" or "license()" for more information.
>>> print(“Hello™)

Hello

>>> print("2+2")

202 |

>>> print(2+2)
4

>>>
>>> a=2
>>> b=2
>>> |

STEP 5 What you have done here is assign the letters a
and b two values: 2 and 2. These are now variables,
which can be called upon by Python to output, add, subtract, divide
and so on for as long as their numbers stay the same. Try this:

print (a)
print (b)

File Edit Shell Debug Options Windows Help I

Python 3.4.2 (default, Oct 19 2014, 13:31:11) -
[GCC 4.9.1] on linux

Type “copyright”, “credits” or “license()" for more information.
>>> print("Hello™)

Hello

>>> print("2+2")

242

>>> print(2+2)

4

>>>

>>> a=2

>>> b=2

>>> print(a)
2

>>> print(b)

> |

I

STEP 6 The output of the last step displays the current
values of both a and b individually, as you've asked

them to be printed separately. If you want to add them up, you can
use the following:

print (a+b)

This code simply takes the values of a and b, adds them together
and outputs the result.

File Edit Shell Debug Qptions Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) o
[GCC 4.9.1] on linux

Type "copyright”, “"credits"” or "license()" for more information.
>>> print(“Hello") h

Hello

>>> print(“2+2")

2+2

>>> print(2+2)

4

>>>

>>> a=2

>>> b=2

>>> print(a)

>>> print(b)

B >>> print(a+b)
|4

> |

STEP 7 You can play around with different kinds of variables
and the Print function. For example, you could

assign variables for someone’s name:

name="David”
print (name)

Python 3.4.2 Shell =G
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[6CC 4.9.1] on linux

Type “copyright”, "credits” or "license()" for more information.
>>> print(“Hello™)

Hello ‘
>>> print("2+2")

2+2

>>> print(2+2)
4

>>>

>>> a=2

>>> b=2

>>> print(a)

4|

2
‘ﬂ >>> print(b)

>>> print(a+h)

4

>>> pame="David"
>>> print(name)
David

| >>>

<Your First Code

STEP 8 Now let's add a surname:

surname="Hayward”

print (surname)

You now have two variables containing a first name and a surname
and you can print them independently.

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help ’

Python 3.4.2 (default, Oct 19 2014, 13:31:11) A

[6CC 4.9.1] on linux ‘
Type "copyright”, “"credits" or "license()" for more information. !
>>> name="David" |

David

>>> surname="Hayward"
>>> print(surname)
Hayward

> |

>>> print(name) I‘

STEP 9 If we were to apply the same routine as before,
using the + symbol, the name wouldn't appear
correctly in the outputin the Shell. Try it:

print (name+surname)

You need a space between the two, defining them as two separate
values and not something you mathematically play around with.

Python 3.4.2 Shell ‘
File Edit Shell Debug Options Windows Help I

Python 3.4.2 (default, Oct 19 2014, 13:31:11) al |
[6CC 4.9.1] on linux

Type “copyright", “credits" or “"license()" for more information. |
>>> name="David"

>>> print(name)
David
>>> surname="Hayward"

>>> print(surname)
Hayward

>>> print(name+surname)
DavidHayward

55> |

STEP 10

print (name,

In Python 3 you can separate the two variables
with a space using a comma:

surname)

Alternatively, you can add the space yourself:

“+surname)

print (name+”

The use of the comma is much neater, as you can see.
Congratulations, you've just taken your first steps into the wide
world of Python.

= = == -— = = i
Python 3.4.2 (default, Oct 19 2014, 13:31:11) 31

[GCC 4.9.1] on linux

Type "copyright", "credits" or "license()" for more information.
>>> name="David"

>>> print(name)

David

>>> surname="Hayward"

>>> print(surname)

Hayward

>>> print(name+surname)
DavidHayward

>>> print(name, surname)
David Hayward

>>> print(name+” “+surname)
David Hayward

e

www.pclpublications.com

D) ovovos)

Saving and Executing
Your Code

While working in the IDLE Shell is perfectly fine for small code snippets, it's not

designed for entering longer program listings. In this section you're going to be
introduced to the IDLE Editor, where you will be working from now on.

EDITING CODE

You will eventually reach a point where you have to move on from inputting single lines of code into the Shell. Instead, the
IDLE Editor will allow you to save and execute your Python code.

STEP 1 First, open the Python IDLE Shell and when it's up,
click on File > New File. This will open a new window
with Untitled as its name. This is the Python IDLE Editor and within it
you can enter the code needed to create your future programs.

flle Edit Shell Debug Options Windows

Python 3.4.2 (default, oct 19 2014. 13
[ﬁ((lv!] %o Tim
copyright”

Type
S5

File Edit Format Run Options

Sereditar or ~Ticwweryr For wars informution:

STEP 2 The IDLE Editor is, for all intents and purposes, a
simple text editor with Python features, colour
coding and so on; much in the same vein as Sublime. You enter

code as you would within the Shell, so taking an example from the
previous tutorial, enter:

print (“Hello everyone!”)

2 |

38 www.pclpublications.com

STEP 3 You can see that the same colour coding is in place
in the IDLE Editor as it is in the Shell, enabling you
to better understand what's going on with your code. However, to

execute the code you need to first save it. Press F5 and you get a
Save...Check box open.

Python 3.4 2 Shel

Ble Edt Shel Debug Qptions Windows Help

Python 3.4.2 (defauls, 0ct 19 2014, 13:31:11)
x«us 1] on linux

Type “Copyri igher, eredits”

“license()" for more information.

@ Sgotne

ok cancel

STEP 4 Click on the OK button in the Save box and select a
destination where you'll save all your Python code.
The destination can be a dedicated folder called Python or you
can just dump it wherever you like. Remember to keep a tidy drive
though, to help you out in the future.

e muwn T D s G DO

print(“Hello everyone!")

[C] loopl.py
[*] main.py
=] namecount.py

By _pycache__ [T] cake.py

[Blue) Projects [Z] circle.py
[Greenfoot Projects [| graphics.py
[Python Code [Z] Hello.py

B scratch Projects [img.py

[*] Addition.py

] square.py
[[] test.py

[7] imgtest.py [*] wordgame.py

[E] Ty

File name: print hello

I Directory: fhome/pi/Documents

I
» |
& % |

| a 2
s o i
i > i
& [

@I] [
[g !

i — O

x
— >
———— 1 o——

Files of type: ~ Python files (*.pv. *.ovw) =1

STEP 5 Enter a name for your code, ‘print hello’ for
example, and click on the Save button. Once the

Python code is saved it's executed and the output will be detailed in
the IDLE Shell. In this case, the words ‘Hello everyone!'.

I arnt hello.py - home/pi/Documents/Python Code/p
Ele B0t Shell Qebug Qptions Windows Hop jnu.mrwnm

Python 3.4.2 (default, Ot 19 2014, 13:31:11)
[66C 4.0.1] on Linux

Type "Copyright”, “credits” or “license()" for more information.

> RESTART

prant(“Hells overyone!

Wollo avoryone!

STEP 6 This is how the vast majority of your Python code
will be conducted. Enter it into the Editor, hit F5,
save the code and look at the output in the Shell. Sometimes things
will differ, depending on whether you've requested a separate
window, but essentially that's the process. It's the process we will
use throughout this book, unless otherwise stated.

Python 3.4.2 Shell -ox§
File Edit Shell Debug Options Windows Help ‘I
Python 3.4.2 (default, Oct 19 2014, 13:31:11) JH
[GCC 4.9.1] on linux
Type "copyright”, "credits" or "license()" for more information.
55> RESTART
5>
Hello everyone!

STEP 7 IFyou open the file location of the saved Python
code, you can see that it ends in a .py extension.
This is the default Python file name. Any code you create will be
whatever.py and any code downloaded from the many Internet
Python resource sites will be .py. Just ensure that the code is written
for Python 3.

File Edit View Bookmarks Go Tools Help l

i & v &> (8] | /nome/pi/Documents/Python Code (X
 Directory Tree ¥ |
i=@lpi)

e pant

{ = EDesktop hello.py

| =@ Documents

© [1BlueJ Projects
+ [Greenfoot Projects
© O _pycache__

® M Python Code

<No subfolders>
+ [Scratch Projects
@ Downloads
< (@ Music
< (& Pictures

<Saving and Executing Your Code m

STEP 8

a=2
B=2
name="David”

Let's extend the code and enter a few examples
from the previous tutorial:

surname="Hayward”
print (name, surname)

print (a+b)

IF you press F5 now you'll be asked to save the file, again, asit's been
modified from before.

STEP 9 If you click the OK button, the file will be

overwritten with the new code entries, and
executed, with the output in the Shell. It's not a problem with just
these few lines but if you were to edit a larger file, overwriting can
become an issue. Instead, use File > Save As from within the Editor
to create a backup.

print hello.py - /home/pi/Documents/Python Code/print hello.py (34.2) - o x

File Edit Format Run Options Windows Help
New File Ctrl+N |
Qpen... Ctrl+0

Recent Files P

Open Module... Alt+M

Class Browser Alt+C ‘

Path Browser

Save Ctrl+S “

Save As... Ctri+Shift+5

Save Copy As... Alt+Shift+S

Print Window Ctrl+P

Close Alt+F4
Bt ama |

STEP 10 Now create a new file. Close the Editor, and open
a new instance (File > New File from the Shell).

Enter the following and save it as hello.py:

a="Python”
b=ll iS"
e="cool '

print(a, b, c)

You will use this code in the next tutorial.

—

hello.py - /home/pi/Documents/Python Code/hello.py (3.4.2) - 0 X
File Edit Format Run Options Windows Help
a="Python" Al
b="1s"
c="cool!"

print(a, b, c)

www.pclpublications.com

m Hello, World>

Executing Code from
the Commmand Line

Although we're working from the GUI IDLE throughout this book, it's worth taking

a look at Python's command line handling. We already know there’s a command line
version of Python but it's also used to execute code.

COMMAND THE CODE

Using the code we created in the previous tutorial, the one we named hello.py, let’s see how you can run code that was made

in the GUI at the command line level.

STEP 1 Python, in Linux, comes with two possible ways of
executing code via the command line. One of the
ways is with Python 2, whilst the other uses the Python 3 libraries
and so on. First though, drop into the command line or Terminal on
your operating system.

pi@raspberrypi: ~ — e

File Edit Tabs Help

STEP 2 Just as before,
we're using a
Raspberry Pi: Windows users will
need to click the Start button and
search for CMD, then click the
Command Line returned search;

=) (] i) Filter
Best match

Command Prompt
Desktop app

Search suggestions »

L cmd - See web results
and macOS users can get access
to their command line by clicking
Go > Utilities > Terminal.

bl cmd\

40 www.pclpublications.com

STEP 3 Now you're at the command line we can start
Python. For Python 3 you need to enter the
command python3 and press Enter. This will put you into the
command line version of the Shell, with the familiar three right-
facing arrows as the cursor (>>>).

. pi@raspbemypi: ~

File Edit Tabs Help

STEP 4

a=2

From here you're able to enter the code you've
looked at previously, such as:

print (a)
You can see that it works exactly the same.

pi@raspberrypi: ~

File Edit Tabs Help

<Executing Code from the Command Line a

STEP 5 Now enter: exit() to leave the command line Python
session and return you back to the command
prompt. Enter the folder where you saved the code from the
previous tutorial and list the available files within; hopefully you
should see the hello.py file.

pi@raspberrypi: ~/Documents/Python Code — g x
File Edit Tabs Help

command line:

From within the same folder as the code you're
going to run, enter the following into the

python3 hello.py
This will execute the code we created, which to remind you is:

a="Python”
b=ll isll

c=“coel!l”

print(a, b, <)

STEP 7 Naturally, since this is Python 3 code, using the
syntax and layout that's unique to Python 3, it only
works when you use the python3 command. If you like, try the same
with Python 2 by entering:

python hello.py
pi@raspberypi: ~/Documents/Python Code = Ll 23
File Edit Tabs Help

STEP 8 The result of running Python 3 code from the
Python 2 command line is quite obvious. Whilst it
doesn’t error out in any way, due to the differences between the
way Python 3 handles the Print command over Python 2, the result
isn't as we expected. Using Sublime for the moment, open the
hello.py file.

E C:\Users\david\Documents\Python\hello.py - Sublime Text (UNREGISTERED)

File Edit Selection Find View Goto Tools Project Preferences Help

“57 hello.py x\k

a="Python”

2 b="is®
c="cool!”
print(a, b, c)

STEP 9 Since Sublime Text isn't available for the Raspberry
Pi, you're going to temporarily leave the Pi for the
moment and use Sublime as an example that you don’t necessarily
need to use the Python IDLE. With the hello.py file open, alter it to
include the following:

name=input (*What is your name? “)
print (“Hello,”, name)

File Edit Selection Find View

a» / hello.py

s Help

STEP 10

code with:

Save the hello.py file and drop back to the
command line. Now execute the newly saved

python3 hello.py

The result will be the original Python is cool! statement, together
with the added input command asking you for your name, and
displaying it in the command window.

pi@raspberrypi: ~/Documents/Python Code ‘

File Edit Tabs Help

www.pclpublications.com 41

D) ovove)

Numbers and Expressions

We've seen some basic mathematical expressions with Python, simple addition and the

like. Let's expand on that now and see just how powerful Python is as a calculator. You
can work within the IDLE Shell or in the Editor, whichever you like.

IT'S ALL MATHS, MAN

You can get some really impressive results with the mathematical powers of Python; as with most, if not all, programming

languages, maths is the driving force behind the code.

Open up the GUI version of Python 3, as mentioned
you can use either the Shell or the Editor. For the

time being, you're going to use the Shell just to warm our maths

muscle, which we believe is a small gland located at the back of the

brain (or not).

Python 3.4.2 Shell
Eile Edit Shell Debug Options Windows Help |

Python 3.4.2 (default, Oct 19 2014, 13:31:11) [~
[6GCC 4.9.1] on linux

Type "copyright”, "credits” or "license()" for more information.
>>>

STEP 2 In the Shell enter the following:

2+2

STEP 3 You can use all the usual mathematical operations:
divide, multiply, brackets and so on. Practise with a

few, for example:

1/2

6/2

242%*3

(1+2) +(3*4)

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help J

Python 3.4.2 (default, Oct 19 2014, 13:31:11) &
[GCC 4.9.1] on linux

Type “"copyright", "credits" or “"license()" for more information.
>>> 2+2

4

>>> 54356+34553245

34607601

>>> 99867344%27344484221

2730821012201179024

>>> 1/2

0.5

>>> 6/2

3.0 1
>>> 2+2%3

8

>>> (1+2)+(3*4)

15

>>> |

STEP 4 You've no doubt noticed, division produces a
decimal number. In Python these are called floats,

or floating point arithmetic. However, if you need an integer as

54356+34553245 a
opposed to a decimal answer, then you can use a double slash:
99867344%27344484221
. 2
You can see that Python can handle some quite large numbers. —r
Python 3.4.2 Shell And so on.
File Edit Shell Debug Options Windows Help ‘ SR
Python 3.4.2 (default. Oct 19 2014, 13:31:11) &l Eile Edit Shell Debug Options Windows Help ‘
[GCC 4.9.1] on linux
Type “copyright”, "credits" or “"license()" for more information. Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al
>>> 242 [GCC 4.9.1] on linux
4 Type “copyright", “credits" or “"license()" for more information
>>> 54356+34553245 25> 2+2
34607601 4
>>> 99867344%27344484221 >>> 54356+34553245
2730821012201179024 34607601

>>>

42 www.pclpublications.com

>>> 99867344%27344484221
2730821012201179024

>>> 1/2

0.5

>>> 6/2

3.0 -
>>> 2+2+3

>>> (142)+(3%4)
15

>>> 1772

0

>>> 6//2
3

> |

10/3

You can also use an operation to see the remainder
left over from division. For example:

Will display 3.333333333, which is of course 3.3-recurring. If you
now enter:

10%3

This will display 1, which is the remainder left over from dividing 10
into 3.

2730821012201179024
>>> 1/2

>>> 6/2

>>> 2+2%3

>>> (142)+(3*4)

>>> 1//2

>>> 6//2

>> 10/3
3.3333333333333335

>>> 10%3
1

STEP 6 Next up we have the power operator, or
exponentiation if you want to be technical. To work
out the power of something you can use a double multiplication
symbol or double-star on the keyboard:

2%%3
1O **10

Essentially, it's 2x2x2 but we're sure you already know the basics
behind maths operators. This is how you would work it out in Python.

|| 55> 672

3.0 =
>>> 2+2%3

8

>>> (1+42)+(3%4)

15

>>> 1//2

0

>>> 6//2

3

>>> 10/3
3.3333333333333335
>>> 10%3

1

>>> 2%*3

8

>>> 10%*10
10000000000
>>>

Numbers and expressions don't stop there. Python

has numerous built-in functions to work out sets
of numbers, absolute values, complex numbers and a host of
mathematical expressions and Pythagorean tongue-twisters. For
example, to convert a number to binary, use:

binz)

Bz
0.5
>>> 6/2

3.0

>>> 2423

8

>>> (1+2)+(3*%4)
15

>3> 1//2

0

>>> 6//2

3

>>> 10/3
3.3333333333333335

>>> 10%3

1

>>> 2%43

8

>>> 10%*10
10000000000

>>> bin(3)
ob11

>5> |

<Numbers and Expressions

STEP 8 This will be displayed as ‘0b11’, converting the
integerinto binary and adding the prefix Ob to the

front. If you want to remove the 0b prefix, then you can use:

format (3, ‘b’)

The Format command converts a value, the number 3, to a
formatted representation as controlled by the format specification,
the ‘b’ part.

>>> 242*3

8

>>> (1+2)+(3*4)
>>> 1//2

>>> 6//2

3

>>>
3. 3333333333333335
33>

1

>>> 2%43

8

>>> 10%*10
10000000000

>>> bin(3)

*ob11’

>>> format(3,'b")
3

>>>

STEP 9 A Boolean Expression is a logical statement that will
either be true or false. We can use these to compare

data and test to see if it's equal to, less than or greater than. Try this

ina New File:
\l“i e
a = 6 Booleantest py - /home/pi/Di
B =i .?ﬁgéiﬂlﬁﬂfigEijEﬂﬂfngff
print (1 Sas=="6) ;mu'a»m
print (2, a 7)) !
print (3, a == 6 and b ' 7
print(4, a == 7 and b Brinis. not Sem 7
pEint (5, net a == 7 and b == 7)
print (6, a == 7 or b 7/
print (7, a == 7 or b 6
print (8, net (@ =="7
print (9, mnot al== 7 and bi=="6)

STEP 10 Execute the code from Step 9, and you can see a
series of True or False statements, depending on

the result of the two defining values: 6 and 7. It's an extension of
what you've looked at, and an important part of programming.

SR ‘

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help ‘
Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al
[6CC 4.9.1] on linux
Typa "copyright”, "credits” or "license()" for more information. |
RESTART
>>>
1 True
2 False

3 True

4 False
5 True
6 True
7 False
8 True
9 False
55>

www.pclpublications.com

D) ovoves)

Using Comments

When writing your code, the flow, what each variable does, how the overall program

will operate and so on is all inside your head. Another programmer could follow the
code line by line but over time, it can become difficult to read.

#COMMENTS!

Programmers use a method of keeping their code readable by commenting on certain sections. If a variable is used, the
programmer comments on what it’s supposed to do, for example. It's just good practise.

STEP 1

print command:

Start by creating a new instance of the IDLE Editor
(File > New File) and create a simple variable and

a=10
print (“The value of A is,”, a)

Save the file and execute the code.

‘[Comments.py - /home/pi/Documen.../Python Code/Commentspy (3.42) - 0 %
- File Edit Format Run Options Windows Help

a=10
print("The value of A is,”, a)

STEP 2 Running the code will return the line: The value of A
is, 10 into the IDLE Shell window, which is what we
expected. Now, add some of the types of comments you'd normally
see within code:
Set the start value of A to 10
a=10
Print the current value of A

print (“The value of A is,”, a)

*Comments.py - /home/pi/Docume..Python Code/Comments.py (342 - o x
| FEille Edit Format Run Options Windows Help J

Set the start value of A to 10
a=10
Print the current value of A

‘ print(“"The value of A is.”, a)

44 www.pclpublications.com

STEP 3 Resave the code and execute it. You can see that the
output in the IDLE Shell is still the same as before,
despite the extra lines being added. Simply put, the hash symbol (#)
denotes a line of text the programmer can insert to inform them,
and others, of what's going on without the user being aware.

Python 3.4.2 Shell - o x
Elle Edit Shell Debug Options Windows Help J |

Python 3.4.2 (default, Oct 19 2014, 13:31:11) A
[GCC 4.9.1] on linux

Type "copyright”, "credits™ or "license()" for more information.

>> RESTART l

>>>
The value of A is, 10

>>> RESTART
>>>

The value of A is, 10

>>>

STEP 4 Let's assume that the variable A that we've created
is the number of lives in a game. Every time the
player dies, the value is decreased by 1. The programmer could
insert a routine along the lines of:

a=a-1
print (“You’ve just lost a lifel!”)

print (“You now have”, a, “lives left!”)

*Comments.py - /home/pi/Docume..Python Code/Comments.py (3.4.2) - o x

File Edit Format Run Options Windows Help

Set the start value of A to 10 Al
a=10
Print the current value of A

' print("The value of A is,", a)
a=a-1
print("You've just lost a life!™)
print(“"You now have", a, “lives left!")

STEP 5 Whilst we know that the variable A is lives, and
that the player has just lost one, a casual viewer or
someone checking the code may not know. Imagine for a moment
that the code is twenty thousand lines long, instead of just our
seven. You can see how handy comments are.

Python 3.4.2 Shell - 0 X%
Elle Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux

Type "copyright”, "credits” or "license()" for more information.

>>> |

Ld__|

>>>

>>>

(Using Comments

Inline comments are comments that follow a section
of code. Take our examples from above, instead of

inserting the code on a separate line, we could use:

a=10 # Set the start value of A to 10
print (“The value of A is,”, a) # Print the current
value of A

a=a-1 # Player lost a life!

print (“You’ve just lost a lifel!”)

print (“You now have”, a, “lives left!”) # Inform

>>>

RESTART player, and display current value of A (lives)
The value of A is, 10 .
>>> RESTART = -

I Comments.py - /nome/pi/Documents/Python Code/Comments.py (3.4.2) - o x
The value of A is, 10 Elle Edt Format Run QOptions Windows Help
gt RESTART a=10 # Set the start value of A to 10
: print(“The value of A is,”, a) # Print the current value of A

The value of A is, 10 a=a-1 # Player lost a life!
You've just lost a life! ' print(“You've just lost a life!”)
You now have 9 lives left! print(“You now have”, a, “lives left!") # Inform player, and display current value of A (lives

>>>

STEP 6

Set the start value of A to 10
a=10
Print the current value of A

Essentially, the new code together with comments
could look like:

print (“The value of A is,”, a)
Player lost a life!

a=a-1

Inform player, and display current value of A
(lives)

print (“You’ve just lost a life!”)

print (“You now have”, a, “lives left!”)

M File Edit Format Run QOptions Windows Help J
Set the start value of A to 10
a=10

Print the current value of A
I print("The value of A is,", a)
Player lost a life!
a=a-1
Inform player, and display current value of A (lives)
print(“You've just lost a life!")
print("You now have”, a, "lives left!")

il

STEP 7 You can use comments in different ways. For
example, Block Comments are a large section of
text that details what's going on in the code, such as telling the code
reader what variables you're planning on using:

This is the best game ever, and has been
developed by a crack squad of Python experts

who haven’t slept or washed in weeks. Despite
being very smelly, the code at least

works really well.

T

Comments.py - /home/pi/Documents/Python Code/Comments. py (3.4.2)
File Edt Format Run Options Windows Help J

STEP 9 The comment, the hash symbol, can also be used to
comment out sections of code you don’t want to be

executed in your program. For instance, if you wanted to remove
the first print statement, you would use:

print (“The value of A is,”, a)

*Comments.py - /home/pi/Documents/Python
Eile Edit Format Run Options Windows Help

Set the start value of A to 10
a=10
Print the current value of A
l # print("The value of A is.,", a)|
Player lost a life!
a=a-1
Inform player., and display current value of A (lives)
print("You've just lost a life!")
print("You now have", a, "lives left!™)

STEP 10 You also use three single quotes to comment
out a Block Comment or multi-line section of
comments. Place them before and after the areas you want to
comment for them to work:

Ay

This is the best game ever, and has been developed
by a crack squad of Python experts who haven’t
slept or washed in weeks. Despite being very

smelly,

1o

the code at least works really well.

File Edit Format Run Options Windows Help

This is the best game ever, and has been developed by a crack squad of Python experts
who haven't slept or washed in weeks. Despite being very smelly, the code at least
‘I # works really well.

Set the start value of A to 10

a=10

Print the current value of A

print("The value of A is,”, a)

Player lost a life!

a=a-1

Inform player. and display current value of A (lives)
print(“You've just lost a life!"

print(“You now have. a, “lives left!")

This is the best game ever, and has been developed by a crack squad of Python experts
who havenOt slept or washed in weeks. Despite being very smelly, the code at least
works really well.|

Set the start value of A to 10
a=10

Print the current value of A
print(“The value of A is.", a)
Player lost a life!

a=a-1

Inform player, and display current value of A (lives)
print("You've just lost a life!”

print(“You now have", a, “lives left!")

www.pclpublications.com

Hello, World>

Working with Variables

We've seen some examples of variables in our Python code already but it's always

worth going through the way they operate and how Python creates and assigns certain
values to a variable.

VARIOUS VARIABLES

You'll be working with the Python 3 IDLE Shell in this tutorial. If you haven't already, open Python 3 or close down the previous

IDLE Shell to clear up any old code.
In some programming languages you're required

to use a dollar sign to denote a string, which is a
variable made up of multiple characters, such as a name of a person.
In Python this isn’t necessary. For example, in the Shell enter:
name="David Hayward” (or use your own name, unless you're
also called David Hayward).

STEP 3

variable names. In our example we ca

You've seen previously that variables can be
concatenated using the plus symbol between the

nuse:print (name + “:

% + title).The middle part between the quotations allows us to
add a colon and a space, as variables are connected without spaces,

so we need to add them manually.

- ——
Python 3.4.2 Shell — = Python 3.4.2 Shell

Eile Edit Shell Debug Options Windows Help | Eile Edt Shell Debug Options Windows Help |

Python 3.4.2 (default, Oct 19 2014, 13:31:11) Iy Python 3.4.2 (default, Oct 19 2014, 13:31:11) A

[GCC 4.9.1] on linux [GCC 4.9.1] on linux

Type “copyright”, “credits” or “license()" for more information. Type "copyright”, "credits” or "license()" for more information.

>>> name="David Hayward" >>> name="David Hayward"

>>> print (name) >>> print (name) m

David Hayward David Hayward

>>> >>> type (name)
<class 'str'> [
»>>> title="Descended from Vikings" 1
>>> print (name + “: " + title) I\

STEP 2 You can check the type of variable in use by
issuing the type () command, placing the name of
the variable inside the brackets. In our example, this would be:
type (name).Add anew stringvariable:title="Descended
from Vikings”.

Python 3.4.2 Shell
Fille Edit Shell Debug Options Windows Help ‘
Python 3.4.2 (default, Oct 19 2014, 13:31:11) 2]

[GCC 4.9.1] on linux

Type “copyright”, “credits" or “license()" for more information.
>>> name="David Hayward"

>>> print (name)

David Hayward

>>> type (name)

<class 'str'>

>>> title="Descended from Vikings"

53> |

46

www.pclpublications.com

David Hayward: Descended from Vikings
>>>

You can also

STEP 4 : :
combine variables

|
Python 3.4.4

File Edit Shell Debug QOptions Windows Help

within another variable. For
example, to combine both name
and title variables into a new
variable we use:

character=name + “: “ +
title

Then output the content of the
new variable as:

print (character)

Numbers are stored as different
variables:

age=44
Type (age)

Which, as we know, are integers.

Python 3.4.2 (default, Oct 19 2014, 13:31:1
[6GCC 4.9.1] on linux

Type "copyright”, "credits” or "license()" '
>>> name="David Hayward"

>>> print (name)

David Hayward

>>> type (name)

<class 'str'>

>>> title="Descended from Vikings"

>>> print (name + “: " + title)

David Hayward: Descended from Vikings

>>> character=name + ": “ + title

>>> print (character)

David Hayward: Descended from Vikings

>>> age=44

>>> type (age)

<class 'int'>

>>>

STEP 5 However, you can’t combine both strings and
integer type variables in the same command, as you
would a set of similar variables. You need to either turn one into the
other or vice versa. When you do try to combine both, you get an
error message:

print (name + age)

Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al
[GCC 4.9.1] on linux
Type "copyright”, "credits” or "license()"
>>> name="David Hayward"
>>> print (name)
David Hayward
>>> type (name)
<class ‘str'>
>>> title="Descended from Vikings"
>>> print (name + “: " + title)
David Hayward: Descended from Vikings
>>> character=name + “: “ + title
>>> print (character)
David Hayward: Descended from Vikings
>>> age=d4
>>> type (age)
<class 'int'>
>>> print (name+age)
Traceback (most recent call last):
File "<pyshell#9>", line 1, in <module>
print (name+age)
TypeError: Can't convert ‘int’
> |

for more information.

object to str implicitly

I A

STEP 6

print (character + “ is “ + str(age)
old.”)

This is a process known as TypeCasting. The Python
codeiis:

+ “ years

Or you can use:

print (character, “is"“, age, “years old.”)

Notice again that in the last example, you don’t need the spaces
between the words in quotes as the commas treat each argument
to print separately.

>>> print (name + age)
Traceback (most recent call last):
File "<pyshell#18>", line 1, in <module>

print (name + age)
TypeError: Can't convert 'int' object to str implicitly
>>> print (character + " is + str(age) + years old.™)
David Hayward: Descended from Vikings 1s 44 years old.
>>> print (character, "is", age, "years old.")
David Hayward: Descended from Vikings is 44 years old.
23>
>>> |

STEP 7

enter:

Another example of TypeCasting is when you ask for
input from the user, such as a name. for example,

age= input (“How old are you? “)

All data stored from the Input command is stored as a string variable.

Python 3.4.2 Shell

File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1] on linux

Type “copyright”, "credits” or “"license()" for more information.
>>> age= input ("How old are you? ™)

How old are you? 44

>>> type(age)

<class 'str'>

>>> |

<Working with Variables

STEP 8 This presents a bit of a problem when you want to
work with a number that’s been inputted by the

user, as age + 10 won't work due to being a string variable and an
integer. Instead, you need to enter:

int (age) + 10

This will TypeCast the age string into an integer that can be
worked with.

Python 3.4.2 Shell = ‘

File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux
Type “copyright", “credits" or "license()" for more information.
>>> age= input ("How old are you? ")
How old are you? 44
>>> type(age)
<class 'str'>
>>> age + 10
Traceback (most recent call last):
File "<pyshell#2>", line 1, in <module>
age + 10
TypeError: Can't convert '"int' object to str implicitly
>>> 1nt(age) + 10
54
>>> |

STEP 9 The use of TypeCasting is also important when
dealing with floating point arithmetic; remember:

numbers that have a decimal point in them. For example, enter:
shirt=19.99

Now enter type (shirt) andyou'll see that Python has allocated
the number as a ‘float’, because the value contains a decimal point.

o

Python 3.4.2 Shell

File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1] on linux

Type "copyright”, "credits" or "license()" for more information.
>>> shirt=19.99

>>> type(shirt)

<class ‘float'>

s3> |

STEP 10 When combining integers and floats Python
usually converts the integer to a float, but should

the reverse ever be applied it's worth remembering that Python
doesn’t return the exact value. When converting a float to an
integer, Python will always round down to the nearest integer,
called truncating; in our case instead of 19.99 it becomes 19.

=
Python 3.4.2 Shell

File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux

Type "copyright”, "credits™
>>> shirt=19.99

>>> type(shirt)

<class ‘float'>

>>> int(shirt)

19

>>> |

or "license()” for more information.

www.pclpublications.com 47

Hello, World>

User Input

We've seen some basic user interaction with the code from a few of the examples

earlier, so now would be a good time to focus solely on how you would get information
from the user then store and present it.

USER FRIENDLY

The type of input you want from the user will depend greatly on the type of program you're coding. For example, a game may
ask for a character’s name, whereas a database can ask for personal details.

STEP 1 IFit's not already, open the Python 3 IDLE Shell,

and start a New File in the Editor. Let's begin with
something really simple, enter:

print (“Hello”)

firstname=input (*What is your first name? “)
print (“Thanks.”)

surname=input (*And what is your surname? “)

Untitled

File Edit Format Run Options Windows Help J

print(“Hello™) &
firstname=input("What is your first name? ")
print(“Thanks.")

‘l surname=input(“And what is your surname? ")

STEP 2 Save and execute the code, and as you already no
doubt suspected, in the IDLE Shell the program will
ask for your first name, storing it as the variable firstname, followed
by your surname; also stored in its own variable (surname).

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) —-[
[GCC 4.9.1] on linux

Type “copyright”, “credits" or “license()" for more information.
>>> RESTART

>>>

Hello

What is your first name? David
Thanks.

And what 1s your surname? Hayward
> |

48 www.pclpublications.com

STEP 3

we want:

Now that we have the user's name stored in a
couple of variables we can call them up whenever

print (“Welcome”, firstname, surname, “. I hope

you’'re well today.”)

userinput.py - /home/pi/Documents/Python Code/userinput py (34.2) - o x

File Edit Format Run Options Windows Help

14

print(“Hello")

firstname=input("What is your first name? ")

print(“Thanks.")

surname=input(“And what is your surname? “)
I print(“welcome”, firstname, surname,”. I hope you're well today.")

STEP 4 Run the code and you can see aslightissue, the
full stop after the surname follows a blank space.
To eliminate that we can add a plus sign instead of the comma in
the code:

print (“Welcome”, firstname, surname+"“. I hope

you’re well today.”)

R

userinput. py - /home/pi/Documents/Python Code/userinputpy (34.2) - o x

File Edit Format Run Options Windows Help J

M print(“Hello™)

firstname=input("What is your first name? ")

print(“Thanks.")

surname=input("And what is your surname? ")

print(“welcome”, firstname, surname+". I hope you're well today.")

STEP 5 You don’t always have to include quoted text within
the input command. For example, you can ask the

user their name, and have the input in the line below:

print (“Hello. What’s your name?”)
name=input ()

= T— L ———
userinput.py - /home/pi/Documents/Python Code/ust

File Edit Format Run Options Windows Help

print(“Hello. What's your name?")
name=input()

'

STEP 6 The code from the previous step is often regarded
as being a little neater than having a lengthy
amount of text in the input command, butit's not a rule that's set in
stone, so do as you like in these situations. Expanding on the code,
try this:

print (“Halt! Who goes there?”)
name=input ()

*userinput.py - /home/pi/Documents/Python Code/userinput py (3.4.2)% -
File Edit Format Run Options Windows Help

print(“Halt! Who goes there?")
name=input()

It's a good start to a text adventure game, perhaps?
Now you can expand on it and use the raw input

from the user to flesh out the game a little:

if name=="David”:
print (“Welcome, good sir. You may pass.”)
else:
print (“I know you not. Prepare for battle!”)
r-. ———
userinput.py - /home/pi/Documents/Python Code/userinputpy (34.2) - o x
File Edit Format Run Options Windows Help

print(“Halt! who goes there?") £

name=input()

1f name=="David":
print(“Welcome, good sir. You may pass.")

else:

print("I know you not. Prepare for battle!™)

(Userlnput

STEP 8 What you've created here is a condition, which we
will cover soon. In short, we're using the input from
the user and measuring it against a condition. So, if the user enters
David as their name, the guard will allow them to pass unhindered.
Else, if they enter a name other than David, the guard challenges
them to a fight.

Python 34,2 Shell
Ble Edt Shell Debug Qptions Windows Help
Dython 343 (default. Oct 18 201, 1331711

16CC 4.9.11 on Linux
Type "copyright”, “credits* or “license()* for more information.
> RESTART

if vid*:
- prant(“Welcome. good sir. You may pass.”)
Halt! who goes there? | I

~ print("I knom you not. Prepare for battle!*)

oavid
velcome, good sir. You may pass.
>> RESTART

1k you pot, Propore. for batelat

Halt! Who goos thora?
conan
I
I
I
I
|

STEP 9 Just as you learned previously, any input from a
user is automatically a string, so you need to apply a
TypeCast in order to turn it into something else. This creates some
interesting additions to the input command. For example:

Code to calculate rate and distance
print (“Input a rate and a distance”)

rate = float (input (“Rate: “))

userinput.py - /nome/pi/Documents/Python Code/userinput.py (3.4.2)
Flle Edit Format Run Options Windows Help

Code to calculate rate and distance
print("Input a rate and a distance")
rate = float(input(“"Rate: "))|

STEP 10 To finalise the rate and distance code, we can add:

distance = float (input (“*Distance:
\\))

print (“Time:”, (distance / rate))

Save and execute the code and enter some numbers. Using the
float(input element, we've told Python that anything entered is a

floating point number rather than a strin -
-]
userinput py - /home/pi/Documents/Python Cod
Ble Edt Shel Debug Qptions Windows Help fle Edn Formar &x\pmm ma Holp g ‘

Python 3.4.2 (default, Oct 19 2014, 13:31:11) [(7 Code to caicuiate rate ana distance
166C 4.5.1] on Linux Print(*input a rato and 3 distance”)
Type “copyright”, "credits” or "license()" for more information. Fate = floatcinput(»
RESTART distance = (loalCnput(-Distance:)
- (T e, (distance / rate
HalTt uo paes therer e (e =

David
Welcone, good sir. You may pass.
ey RESTART

Halt! Who goes there?
Con;

I know you not. Prepare for battle!
»>

RESTAKT

Input a rate and & distance
Rate: 12
Distance: 24

T3

www.pclpublications.com 49

D ovoves)

Creating Functions

Now that you've mastered the use of variables and user input, the next step is to tackle

functions. You've already used a few functions, such as the print command but Python

enables you to define your own functions.

FUNKY FUNCTIONS

A function is a command that you enter into Python to do something. It’s a little piece of self-contained code that takes data,

works on it and then returns the result.
STEP 1 It's not just data that a function works on. They can
do all manner of useful things in Python, such as
sort data, change items from one format to another and check the
length or type of items. Basically, a function is a short word that's
followed by brackets. For example, len(), list() or type().

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) £
[GCC 4.9.1] on linux

Type “copyright", “"credits" or “license()" for more information.
>>> leniy

STEP 2 A function takes data, usually a variable, works on
it depending on what the function is programmed
to do and returns the end value. The data being worked on goes
inside the brackets, so if you wanted to know how many letters
are in the word antidisestablishmentarianism, then you'd enter:
len(“antidisestablishmentarianism”) and the number 28
would return.

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help [

Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al
[GCC 4.9.1] on linux '
Type “copyright", “credits" or “license()" for more information.

>>> len("antidisestablishmentarianism™)

28

555 |

50 www.pclpublications.com

STEP 3 You can pass variables through functions in much
the same manner. Let's assume you want the
number of letters in a person’s surname, you could use the following
code (enter the text editor for this example):

name=input (“Enter your surname: “)
count=1en (name)

print (“Your surname has“, count,
iE)

“letters in

Press F5 and save the code to execute it.

STEP 4 Python has tens of functions built into it, far too
many to getinto in the limited space available here.
However, to view the list of built-in functions available to Python 3,
navigate to www.docs.python.org/3/library/functions.html. These
are the predefined functions, but since users have created many
more, they're not the only ones available.

Python 3.4.2 Shell - o x
File Edit Shell Debug Options Windows Help |
Python 3.4.2 (default, Oct 19 2014, 13:31:11) L J

[GCC 4.9.1] on linux
Type “copyright”, “credits” or “license()" for more information. I‘

>>> len("antidisestablishmentarianism™)

28

5> RESTART
>>>

Enter your surname: Hayward

Your name has 7 letters in it.

>>> import math

>>>

STEP 5 Additional functions can be added to Python
through modules. Python has a vast range of
modules available that can cover numerous programming duties.

They add functions and can be imported as and when required. For
example, to use advanced mathematics functions enter:

import math

Once entered, you have access to all the Math module functions.

(Creating Functions

STEP 6 To use a function from a module enter the name of
the module followed by a full stop, then the name
of the function. For instance, using the Math module, since you've

just imported it into Python, you can utilise the square root function.
To do so, enter:

math.sqgrt (16)

You can see that the code is presented as module.function(data).

Python 3.4.2 Shell Python 3.4.2 Shell - i) g ‘
File Edit Shell Debug Options Windows Help ‘ file Edit Shell Debug Options Windows Help |
Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al Python 3.4.2 (default, Oct 19 2014, 13:31:11) 2]

[GCC 4.9.1] on linux

Type “"copyright”, “credits" or “"license()" for more information. i
>>> len("antidisestablishmentarianism”)

28 |
>>> RESTART |
>>>

Enter your surname: Hayward
Your name has 7 letters in it.
>>> import math

>>>

Type “copyright“, “"credits" or “"license()" for more information.
>>> len("antidisestablishmentarianism™)
28
>>> RESTART
>>>
Enter your surname: Hayward
Your name has 7 letters in it.
>>> import math
>>> math.sqrt(16)
|a.0

[GCC 4.9.1] on linux |

FORGING FUNCTIONS

There are many different functions you can import created by other Python programmers and you will undoubtedly come
across some excellent examples in the future; you can also create your own with the def command.

STEP 1
Enter:

def Hello():

print (“Hello”)

Press F5 to save and run the script. You can see Hello in the Shell,
type in Hello() and it returns the new function.

file Cdt Shell Debug Options Windows lielp. \lmgqsmuwmm

Pythan 5,43 (Gefault, Oct 18 2014 18:31:11) B e teitot):

166C 4.9.7] on Tinux |7 print (ueltany
“Copy ight” . “credits” or "license()" for more information. |

RESTARI ‘ Hellagy

STEP 3 To modify it further, delete the Hello(“David”) line,
the last line in the script and press Ctrl+S to save
the new script. Close the Editor and create a new file (File > New
File). Enter the following:

from Hello import Hellol
Hello (“David”)

Press F5 to save and execute the code.

Choose File > New File to enter the editor, let’s
create a function called Hello, that greets a user.

Ela EdT Shel Debug ptians wndows Help o Edt Fomat EBun Options Windows Holp
Python 3.4-2 (default, Oct 19 2014, 13:31:11) 7o tello hiello

[66C 4.9.1] on Linux

Type "copyraght”, "credits” or “license()" for more information.
I RESTART

Hello(“bavid")

Wello bavid
Sl

110()

STEP 2

script to read:

STEP 4 What you've just done is import the Hello function
from the saved Hello.py program and then used it
to say hello to David. This is how modules and functions work: you

import the module then use the function. Try this one, and modify
it For extra credit:

def add(a, b):
result = a + Db

return result

Let's now expand the function to accept a
variable, the user’'s name for example. Edit your

def Hello (name) :
print (“Hello”, name)

Hello (“David”)

This will now accept the variable name, otherwise it prints Hello
David. In the Shell, enter: name=(“Bob”), then: Hello(hame). Your
function can now pass variables throughit.

Python 3.4.2 Shel

Ele Edt Shell Debug Options Windows Help
[Python %.4.7 (defaulr. OcT 19 7014, 14:41:11)
(GCC 4.9.1] on linux |
Type “copyright”. “credits” or “license()" for more information.

>3 RESTART

Ele Edt Format Bun Qptions Windows Help.

el n(nane):
print (Wello. name)

Hello("David*)

aa4(213.33.33)
21 pasessinsivia

www.pclpublications.com

D ovoves)

Conditions and Loops

Conditions and loops are what make a program interesting; they can be simple or rather

complex. How you use them depends greatly on what the program is trying to achieve;
they could be the number of lives left in a game or just displaying a countdown.

TRUE CONDITIONS

Keeping conditions simple to begin with makes learning to program a more enjoyable experience. Let’s start then by checking

if something is TRUE, then doing something else if it isn’t.
STEP 1 Let's create a new Python program that will ask
the user to input a word, then check it to see if it's
a four-letter word or not. Start with File > New File, and begin with
the input variable:

word=input (“Please enter a four-letter word: “)

Python 3.4.2 She =iniw
File Edt Shell Debug Options Windows Help Windows Help
Bython 3.4.2 (default. Oct 16 2014, 13:31:11) word-input(*Pleaze enter 3 four

16cC 4.9.1] on Linux i
Type “copyright™, “credits™ or “license()” for more information.
7]

iLn: &[Cok &

| Ele gdr romat mun oations

Tetter mord: -

STEP 2 Now we can create a new variable, then use the len
function and pass the word variable through it to

get the total number of letters the user has just entered:

word=input (“Please enter a four-letter word: “)
word_length=len (word)

File Edit \=grmat Run Options Windows Help J

word=input(“Please enter a four-letter word:) =
word_length=1len(word)

52 www.pclpublications.com

STEP 3 Now you can use an if statement to check if the
word_length variable is equal to four and print a

friendly conformation if it applies to the rule:

word=input (“Please enter a four-letter word: “)
word_length=len (word)
if word length ==

print (word, “is a four-letter word. Well done.”)

The double equal sign (==) means check if something is equal to
something else.

File Edit Format Run Options Windows Help

word=1input(“Please enter a four-letter word: *) Al
word_length=1len(word)
1f word_length == 4:
print (word, "is a four-letter word. Well done.™)

STEP 4 The colon at the end of IF tells Python that if this

statement is true do everything after the colon
that's indented. Next, move the cursor back to the beginning of
the Editor:

word=input (“Please enter a four-letter word: “)
word_length=1len (word)
if word length == 4:

print (word, “is a four-letter word. Well
done.”)
else:

“is not a four-letter word.”)

print (word,

File Edit Format Run Options Windows Help J

word=1nput(“"Please enter a four-letter word: ") Al
word_length=len(word)
1f word_length == 4:

print (word, "is a four-letter word. Well done.™)
else:

rprint (word, "is not a four-letter word.™)

STEP 5 Press F5 and save the code to execute it. Enter
a four-letter word in the Shell to begin with, you
should have the returned message thatit's the word is four letters.
Now press F5 again and rerun the program but this time enter a
five-letter word. The Shell will display that it's not a four-letter word.

w wordgame py - fome/pi/Documents/wordgam
Flo Edt Shell Debug Qptions Windows Help | Ple Ede romst pun Ostions Windows Help

Python 342 (GeTault. Oct 19 201 13T3ITTL) P Vora-input(picaze enter o four letter word:)

TECC 1.5.1] ‘on Lamux nord lengthLencro

Type “copyright®. "credits or “license()* for more information. frifs

e ResTART)

Ploase enter 3 four-letter word: vord

print (word,
Vord 1 3 four-lotter word. Well dane.
> e

Please wnter o four-letter nord: Frost
Exoatriamet a M- etuie s

LOOPS

(Conditions and Loops

STEP 6 Now expand the code to include another conditions.
Eventually, it could become quite complex. We've

added a condition for three-letter words:

word=input (“Please enter a four-letter word: “)
word_length=len (word)
if word length ==

print (word, “is a four-letter word. Well
done.”)
elif word length ==

print (word, “is a three-letter word. Try again.”)
else:

print (word, “is not a four-letter word.”)

13" or “license()” for more information
REstas

Leteer mord: word
Letter nard. Well Gone.
resTaRr

four-Lettar word: Frost
four-Letter mord.

A loop looks quite similar to a condition but they are somewhat different in their operation. A loop will run through the same
block of code a number of times, usually with the support of a condition.

STEP 1 Let’s start with a simple While statement. Like IF,
this will check to see if something is TRUE, then run

the indented code:

ntitled*
flle Edit Format Run Options Windows Help

x=1
I vhile x<10:

print (x)
X=x+1

STEP 2 The difference between if and while is when while
gets to the end of the indented code, it goes back

and checks the statement is still true. In our example xis less than
10. With each loop it prints the current value of x, then adds one to
that value. When x does eventually equal 10 it stops.

T |
loop1.py - /home/pi/D
EWle Edt Shell Debug Qptions windows Help Ede Edt Fgrmat Bun Qptions Windows e
Python 3.4.2 (default, Oct 19 2014, 13:31:11) -1
921 on linux v

16CC 4,901
Type “copyright™. “"credits” or "license()” for more information.
>>> RESTART

STEP 3 The For loop is another example. For is used to
loop over a range of data, usually a list stored as
variables inside square brackets. For example:

words=[“"Cat”, “Dog”, “Unicorn”]
for word in words:

print (word

Efe EOt Shell Debug Qptions Windows Help
Python 3.4.2 (defoult, Oct 15 2014, 13:31:11)
6CC 4

Fle Edt Fammat Bun Options Windows Help

words=["Cat", “Dog", “Unicorn")

for word in words:
prant (word)

inux
=, “credits” or “license()" for more information.
RESTART

STEP 4

for x in range

The For loop can also be used in the countdown
example by using the range function:

{1, 1L0):

print (x)

The x=x+1 partisn't needed here because the range function
creates a list between the first and last numbers used.

Efe EGt shel Debug Qptions wndows Help .B'E&lennwumwmm

Python 3.4.2 (defoult, Oct 19 2014, 13:31:11) Al
16CC 4.9.1) on linux

Type "copyright”. "credits” or "license()" for more information.

>> RESTART

x in range (1. 10):

print (x)

www.pclpublications.com

ﬁ Hello, World>

Python Modules

We've mentioned modules previously, (the Math module) but as modules are such a

large part of getting the most from Python, it's worth dedicating a little more time to
them. In this instance we're using the Windows version of Python 3.

MASTERING MODULES

Think of modules as an extension that's imported into your Python code to enhance and extend its capabilities. There are
countless modules available and as we've seen, you can even make your own.

STEP 1 Although good, the built-in functions within Python
are limited. The use of modules, however, allows us
to make more sophisticated programs. As you are aware, modules
are Python scripts that are imported, such as import math.

(& [}

File Edit Shell Debug Options Window Help

Python 3.6.2 (v3.6.2:5£d33b5, Jul 8 2017, 04:14:34) [MSC v.1900 32 bit (Intel)]
o 32

| Type "copyright", "credits" or "license()" for more information.

rt math

STEP 2 Some modules, especially on the Raspberry Pi,
are included by default, the Math module being a
prime example. Sadly, other modules aren’t always available. A good
example on non-Pi platforms is the Pygame module, which contains
many functions to help create games. Try: import pygame.

s
& 2 =

File Edit Shell Debug Options Window Help

Python 3.6.2 (v3.6.2:5fd33b5, Jul 8 2017, 04:14:34) [MSC v.1900 32 bit (Intel)]
on win32

| Type "copyright”, "credits" or "license()" for more information.

o module named 'pygame’

54 www.pclpublications.com

STEP 3 The resultis an error in the IDLE Shell, as the
Pygame module isn't recognised or installed in

Python. To install a module we can use PIP (Pip Installs Packages).
Close down the IDLE Shell and drop into a command prompt or
Terminal session. At an elevated admin command prompt, enter:

pip install pygame

STEP 4 The PIP installation requires an elevated status
due it installing components at different locations.
Windows users can search for CMD via the Start button and right-
click the result then click Run as Administrator. Linux and Mac users
can use the Sudo command, with sudo pip install package.

STEP 5 Close the command prompt or Terminal and
relaunch the IDLE Shell. When you now enter:
import pygame, the module will be imported into the code
without any problems. You'll find that most code downloaded or
copied from the Internet will contain a module, mainstream of
unique, these are usually the source of errors in execution due to
them being missing.

[@® Python 35.2

File Edit Shell Debug Options

Shell

o
Window Help

Python 3.6.2 (v3.6.2:5£d33b5, Jul 8 2017, 04:14:34) [MSC v.1900 32 bit (Intel)]
on win3z
Type "copyright", "credits" or "license()" for more information.

>>>
>>>

import pygame

STEP 6 The modules contain the extra code needed to
achieve a certain result within your own code, as

we've previously experimented with. For example:
import random

Brings in the code from the Random Number Generator module.
You can then use this module to create something like:

for i in range(10) :

print (random.randint (1, 25))

B
File Edit Format Run Options Window Help
| import random

led

| for i in range(10):
print (random.randint (1, 25))

STEP 7 This code, when saved and executed, will display ten
random numbers from 1 to 25. You can play around
with the code to display more or less, and from a great or lesser
range. For example:

import random

for i in range (25):

print (random.randint (1, 100))

[t} n 0 €]

Fle Edit_Shel Debug Option: Window Melp Fla Edit Fomut Run Options Window Help

Almrers canaom

RESTART: G, trumber.py

1 in range(6)1
priat (random. randint (1, 100))

RESTART: Humber.py

(Python Modules

STEP 8

import random

Multiple modules can be imported within your code.
To extend our example, use:

import math

for I in range (5) :

print (random.randint (1, 25))
print (math.pi)
[® Rnd Number.py - C:/Users/david/Documents/Python/Rnd Number.py (3.6.2 = o

or i in range(5):

print (random.randint (1, 25))

print (math.pi)

The result is a string of random numbers followed

by the value of Pi as pulled from the Math module
using the print(math.pi) function. You can also pullin certain
functions from a module by using the from and import commands,
such as:

from random import randint

for i in range (5) :

print (randint(l, 25))

[® Rnd Number.py - Ci/Users

File Edit Format Run Options Window Help

david/Documents/Python/Rnd Nu

from random im randint

for i in range(S):
print (randint (1, 25))

STEP 10 This helps create a more streamlined approach to
programming. You can also use import module*,

which will import everything defined within the named module.
However, it's often regarded as a waste of resources but it works
nonetheless. Finally, modules can be imported as aliases:

import math as m
print (m.pi)
Of course, adding comments helps to tell others what's going on.

& *Rnd Number.py - C:/Users/david/Documents/Python/Rnd Number.py (3.6.2)* - o X

File Edit Format Run Options Window Help
import math as m

print (m.pi)

www.pclpublications.com

55

D oove)

Python Errors

It goes without saying that you'll eventually come across an error in your code, where

Python declares it's not able to continue due to something being missed out, wrong or
simply unknown. Being able to identify these errors makes for a good programmer.

DEBUGGING

Errors in code are called bugs and are perfectly normal. They can often be easily rectified with a little patience. The important
thing is to keep looking, experimenting and testing. Eventually your code will be bug free.

STEP 1 Code isn't as fluid as the written word, no matter
how good the programming language is. Python is
certainly easier than most languages but even it is prone to some
annoying bugs. The most common are typos by the user and whilst
easy to find in simple dozen-line code, imagine having to debug
multi-thousand line code.

6

STEP 2 The most common of errors is the typo, as we've
mentioned. The typos are often at the command
level: mistyping the print command for example. However, they also
occur when you have numerous variables, all of which have lengthy
names. The best advice is to simply go through the code and check
your spelling.

Python 3.4.2 Shell - o x i

STEP 3 Thankfully Python is helpful when it comes to
displaying error messages. When you receive an
error, in red text from the IDLE Shell, it will define the error itself
along with the line number where the error has occurred. Whilst in
the IDLE Editor thisis a little daunting for lots of code; text editors
help by including line numbering.

Python 34 7 Shel
yi

Bl EdU Shel Debug Qptions Windaws Help

| Ble Edt Fgmat Bun Qptions Windows Help
Python 3.4.2 (default, Oct 19 2014, 13:31:11) af

GCC 4.9.11 on linux

1
Type “copyright”, “credits® or “license()” for more information. # dran the white background onto the surface
> RESTART

> windonSurface. £111(MITE)
Iraceback (most recent call
ri

1ast):
cs.py", line 03, in module |
e. RED. (300. 250. 40. 80). 1)

urtac
fehpygane’ 15 not defined # draw 3 green polygon onto the surface

HameCrror: n

pygame..dran.polygon(windonsur face, GREEN, (116, 0),

(60, 60), (120
pygame. draw. Line(windonGur face, BLUE, (120, 60). (60
pygame. drow. Line(windonGur face, BLUE, (60, 120). (120

dran a blue circle onto the surface

pyRame. dran.c ircle(nindonSur face, BLUE, (300, 30), 20

draw 3 red ellipse onto the surface

MBioygame . dran.ellipse(windowsurface, RED, (300, 250

draw the text's background rectangle onto the surty

Pygame. dran. rect(windonSurtace. RED. (textRect.lett

o

[tn:10[Cok 4,

STEP 4 Syntax errors are probably the second most
common errors you'll come across as a programmer.
Even if the spelling is correct, the actual command itself is wrong.
In Python 3 this often occurs when Python 2 syntaxes are applied.
The most annoying of these is the print function. In Python 3 we use
print(“words"), whereas Python2 uses print “words”.

>>> apples=10
>>> pirnt(apples)
Traceback (most recent call last):
File “<pyshell#1>", line 1, in <module>
pirnt(apples)
NameError: name ‘pirnt' is not defined
e |

56 www.pclpublications.com

FEile Edit Shell Debug Options Windows Help I File Edit Shell Debug Options Windows Help

Python 3.4.2 (default. Oct 19 2014, 13:31:11) Al Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al
[GCC 4.9.1] on linux | [6CC 4.9.1] on linux

Type "copyright", "credits" or "license()" for more information. “ Type “"copyright"”, “credits" or “"license()" for more information.

>>> print“Hello world!f§
SyntaxError: invalid syntax
>>>

STEP 5

print (balanced_check (input ()))

Pesky brackets are also a nuisance in programming
errors, especially when you have something like:

Remember that for every ‘(' there must be an equal number of)'.

1 import sys
2

3 v def balanced_check(data):
4 stack = []
characters = list(data

7v for character in characters:

8 reference = {

9 iy W

10 fhy M
TOE

}
13 if character in reference.keys():
14 stack.append(character)

elif character in reference.values() and len(stack) > 0:

17 char = stack.pop()

18 if reference.get(char) != character:
19 return "NO"

20 else

STEP 6 There are thousands of online Python resources,
code snippets and lengthy discussions across forums
on how best to achieve something. Whilst 99 per cent of it is good
code, don’t always be lured into copying and pasting random code
into your editor. More often than not, it won't work and the worst
part is that you haven't learnt anything.

You have a bare except clause; i.e.,

try:

8 some_code()

except:
clean_up()

The problem with a bare except is that it will catch all exceptions, including ones you really
don’t want to be ignoring (like Keyboardinterrupt and SystemExit). It would be much better if
your except block only caught the specific exception you expect, and let all others bubble up
as normal

A few other general comments on your code:
« In line 200, you have this construction:
for letter in range(len(chosen_word)):
if player_guess == chosen_word[letter]:

word_guessed[letter] = player_guess

You're looping over the index variable, but also using the list element. It would be better to
write:

for idx, letter in enumerate(chosen word):
if player_guess == letter:

STEP 7 Indents are a nasty part of Python programming
that a lot of beginners fall foul of. Recall the If loop
from the Conditions and Loops section, where the colon means
everything indented following the statement is to be executed as
long as it's true? Missing the indent, or having too much of indent,
will come back with an error.

”Eﬂe Edit Format Run Options Windows Help

word=input(“Please enter a four-letter word: ")
word_length=1en(word)

1f word_length == 4:

print (word, "is a four-letter word. Well done.")
else:

print (word, "is not a four-letter word.™)

SyntaxError - o x

° expected an indented block

<Python Errors

STEP 8 An excellent way to check your code step-by-step
is to use Python Tutor's Visualise web page, found
at www.pythontutor.com/visualize.html#mode=edit. Simply
paste your code into the editor and click the Visualise Execution
button to run the code line-by-line. This helps to clear bugs and
any misunderstandings.

« Pe—— -~ o e

Test your Python
debugging skils!

STEP 9 Planning makes for good code. Whilst a little old
school, it's a good habit to plan what your code
will do before sitting down to type it out. List the variables that will
be used and the modules too; then write out a script for any user
interaction or outputs.

true false

STEP 10

Purely out of interest, the word debugging in
computing terms comes from Admiral Grace

Hopper, who back in the ‘40s was working on a monolithic Harvard
Mark Il electromechanical computer. According to legend Hopper
found a moth stuck in a relay, thus stopping the system from
working. Removal of the moth was hence called debugging.

57

www.pclpublications.com

D) ovoves)

Combining What
You Know So Far

We've reached the end of this section so let’s take a moment to combine everything

we've looked at so far, and apply it to writing a piece of code. This code can then be
used and inserted into your own programs in future; either part of it or as a whole.

PLAYING WITH PI

For this example we’'re going to create a program that will calculate the value of Pi to a set number of decimal places, as
described by the user. It combines much of what we've learnt, and a little more.

Start by opening Python and creating a New File in
the Editor. First we need to get hold of an equation
that can accurately calculate Pi without rendering the computer’s
CPU useless for several minutes. The recommended calculation
used in such circumstances is the Chudnovsky Algorithm, you

can find more information about it at en.wikipedia.org/wiki/
Chudnovsky_algorithm.

STEP 2 You can utilise the Chudnovsky Algorithm to create
your own Python script based on the calculation.
Begin by importing some important modules and functions within
the modules:

from decimal import Decimal, getcontext
import math

This uses the decimal and getcontext functions from the Decimal
module, both of which deal with large decimal place numbers and
naturally the Math module.

STEP 3 Now you can insert the Pi calculation algorithm
part of the code. This is a version of the

Chudnovsky Algorithm:

def calc(n):
t = Decimal (0)
pi = Decimal (0)

deno = Decimal (0)
k=0 |
for k in range(n) :
t = (Decimal (-1) **k) * (math.factorial
(Decimal (6) *k)) * (13591409 +545140134*k)
deno = math.factorial (3*k) * (math.
factorial (k) **Decimal (3)) * (640320** (3*k))
pi += Decimal (t) /Decimal (deno)

(6151 (135913080545 140134%)
S+ e sl 1))+ CbA1200e (%)

pi = pi * Decimal (12)/
Decimal (640320**Decimal (1.5))

pi = 1/pi

return str(pi)

58 www.pclpublications.com

STEP 4 The previous step defines the rules that make
up the algorithm and creates the string that will
eventually display the value of Pi, according the Chudnovsky
brothers’ algorithm. You have no doubt already surmised that it
would be handy to actually output the value of Pi to the screen. To
rectify that you can add:

printlealc (1))

STEP 5 You can save and execute the code at this point if
you like. The output will print the value of Pito 27
decimal places: 3.141592653589734207668453591. Whilst pretty
impressive on its own, you want some user interaction, to ask the
user as to how many places Pi should be calculated.
STEP 6 You can insert an input line before the Pi calculation
Def command. It needs to be an integer, as it will

otherwise default to a string. We can call it numberofdigits and use
the getcontext function:

numberofdigits = int (input (“please enter the

number of decimal place to calculate Pi to:

)

getcontext () .prec = numberofdigits

CalcPi.py - /home/pi/Documents/Python Code/CalcPi.py (3.4.2)
Elle Edit Format Run Options Windows Help

from decimal import Decimal, getcontext
mpert math

numberofdigits = int(input(“please enter the number of decimal places to calculate Pi to: "))
getcontext().prec = numberofdigits

def calc(n):

t = Decimal(0)

pi = Decimal(0)

deno = Decimal(0)

k=0

for k in range(n):
t = (Decimal(-1)**k)*(math.factorial(Decimal(6)*k))*(13591409+545140134*k)
deno = math.factorial(3*k)*(math.factorial(k)**Decimal(3))*(640320%*(3*k))
pi += Decimal(t)/Decimal(deno)

pi = pi * Decimal(12)/Decimal(640320%*Decimal(1.5))

pi=1/pi

eturn str(pi)

print(cale(1))

STEP 7 You can execute the code now and it asks the user
how many decimal places they want to calculate Pi
to, outputting the result in the IDLE Shell. Try it with 1000 places
but don't go too high or else your computer will be locked up in
calculating Pi.

STEP 8 Part of programming is
being able to modify code,

making it more presentable. Let’s include
an element that times how long it takes our
computer to calculate the Pi decimal places
and present the information in a different
colour. For this, drop into the command line
and import the Colorama module (RPi users
already have it installed):

File Edit Tabs

pip install colorama

<Combining What You Know So Far

TEP 9 Now we need to import the Colorama module
(which will output text in different colours) along
with the Fore function (which dictates the foreground, ink, colour)
and the Time module to start a virtual stopwatch to see how long
our calculations take:

import time
import colorama
from colorama import Fore

numberofdigits = int(input(“please enter the number of decimal

getcontext().prec = numberofdigits

s to calculate Pi to: ™))

f cale(n):
t = Decimal(0)
pi = Decimal(0)
deno = Decimal(0)
k=
vk in range(n):
t = (Decimal(-1)**k)*(math. factorial(Decimal(6)*k))*(13591409+545140134%k)
deno = math.factorial(3*k)*(math. factorial(k)**Decimal(3))*(640320** (3*k))
pi += Decimal(t)/Decimal(deno)
pi = pi * Decimal(12)/Decinal(640320**Decimal(1.5))
pi = 1/pi
urn str(pi)

print(calc(1))

STEP 1 To finish our code, we need to initialise the
Colorama module and start the time function at
the point where the calculation starts, and when it finishes. The end
result is a coloured ink displaying how long the process took (in the
Terminal or command line):

from decimal import Decimal, getcontext
import math

import time

import colorama

from colorama import Fore
colorama. init ()

numberofdigits = int (input (“please enter the number

)

of decimal places to calculate Pi to:

getcontext () .prec = numberofdigits

start_time = time.time()

def calc(n):

® © H % Q| ~ryhonzs2shel

Python 3.4.2

‘ A CalcPi.py - /home/pi. ‘pi@mspbenypi ~/D..

-0 x

Fle Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[6CC 4.9.1] on linux

Type "copyright”,
>>>

decimal 1
math

"credits” or "license()" for more information.
RESTART

please enter the nunber of decinal places to calculate Pi to: 1000 coloramacinit()
420 78!

04145498737666209401659
maoss! 1 7347465659757798 16037965556627803580 1345995935 132861731766 15982806223108
04419737853125305651521157470859338317744154596022745876277128465914181337399228
59535784112988088378242126794689633529216676947336619680715159349309584269265090
801 876996061A70661 170037502060173442845131 ¢24309303278637755604m147230694298 134
9091 138101161111956856848705962570
\3572723252284798\ 869171 513673530967032223036l529297 1732815423261495480206046405
353987507601397. 44
8898250684233830990574001 375832770 1784908891322958527973601013169595019458889349
44236412539394146530738483636665042264154387773376017707109142428744379717832620
33721044052592738923786964883 9157823643188
34956170648852260770217962185905198741140188951968612315753706167429421120955210
|| 45317853525104446927986692358116127392886
>>>

start_time = time.time()
jef calc(n)
t = Decimal(0)
pi = Decimal(0)
deno = Decimal(0)

for k in range(n):

pi = 1/pi
sturn str(pi)

please enter the nusber of decinal places to calculate bi to: 1000

420° 78. 4145498737666209401659
1080§6|17347469659757795|50379555565275\)3550|345595535!3256173|76615§HZHD5223|08
04419737853125305651521 157470850336317744154596022745876277 128465914181337399228
59535784112988088378242126 6947336619680715 090
80187699606|470662|70057502060\73“2845|310248093032736877556040714723069A298|3‘
457874666577 7138101161111956856848705962570
13872723252284798186917 18486735309670822230361529207 1732815423261495480206046.403
35398750760139:

print(calc(1))
print(Fore.RED +

400137593277(”7 4908 29555279735010|z|5959$mwssa39349
44236412539394146530738483636665042264 154387 773376017707109142428744379717832620
33721044052592738923 4883 4 7458666952279157823643188
34956170648852260770217962185905198741140188951968612315753706167429421120955210
45317853525104446927986692358116127392886

o[31m

Time taken: 5.99211573600769

File Edit Tabs Help

t Decimal, getcontext

numberofdigits = int(input("please enter
getcontext().prec = numberofdigi

t = (Decimal(-1)**k)*(math. factorial(Decimal(6)*k))*(13591409+545140134%k)
deno = math. factor1al(3*k)*(math. factorial(k)**Decimal(3))*(640320%*(3*k))
pi += Decimal(t)/Decimal(deno

pi = pi * Decimal(12)/Decinal(640320**Decinal(1.5))

\nTime taken

pi@raspberrypi: ~/Documents/Python Code

t = Decimal (0)

pi = Decimal (0)
deno = Decimal (0)
k =0

for k in range (n) :
t = (Decimal (-1)**k) * (math.
factorial (Decimal (6) *k)) * (13591409+545140134*k)
deno = math.factorial (3*k)* (math.
factorial (k) **Decimal (3)) * (640320** (3*k))
pi += Decimal (t) /Decimal (deno)
pi = pi * Decimal (12)/
Decimal (640320**Decimal (1.5))
pi = 1/pi
return str(pi)

print(cale(l))
print (Fore.RED + “\nTime taken:”,
start_time)

time.time() -

"“ Elle Edt Format Run Options Windows Help

the nunber of decimal places to calculate Pi to: "))

. time.time() - start_time)

M
Ln: 28 Col:

www.pclpublications.com

Python in Focus:

Stitching Black Holes

One of the biggest scientific, engineering and space-based projects came to a head in
2019, revealing humanity's first glimpse at the universe’s most elusive object: a black
hole. But what's that got to do with Python?)

Imaging a black hole is pretty difficult. The very nature of a
black hole means that nothing can escape its immense gravitational
field, even light itself. To quote the Wikipedia entry for a black hole:

“A black hole is a region of spacetime exhibiting gravitational
acceleration so strong that nothing—no particles or even
electromagnetic radiation such as light—can escape from it. The
theory of general relativity predicts that a sufficiently compact mass
can deform spacetime to form a black hole. The boundary of the
region from which no escape is possible is called the event horizon.
Although the event horizon has an enormous effect on the fate and
circumstances of an object crossingit, no locally detectable features
appear to be observed. In many ways, a black hole acts like an ideal
black body, as it reflects no light. Moreover, quantum field theory

EVENT HORIZON TELESCOPE

One of the problems regarding the imaging of such an object is
angular resolution. In Astronomy, the size of the objects in the night
sky is referred to by the amount of the sky they take up - units of
arc. An arc, or arc second, is a measurement (1/3600 of a degree)
that describes the size of an angle in degrees, designated by the
symbol °. A full circle is divided into 360° and a right-angle measures
90°. One degree can be divided into 60 arcminutes (abbreviated 60
arcmin or 60°). An arcminute can also be divided into 60 arcseconds
(abbreviated 60 arcsec or 60”).

For example, looking at the moon, which is roughly 31 arcminutes,
imagine drawing a line from you to one side of the moon and
another to the opposite side of the moon, the angle between the
two lines is the angular size, or angular resolution.

The black hole at the centre of the Messier 87 galaxy, the one that
was imaged, is 55 million light years from Earth and has an angular
size of 40 microarc seconds, or one millionth of an arcsecond. So,
in order to see it, we would need a telescope with a diameter of
around 8Km, which simply isn't possible as a single unit.

This is where the Event Horizon Telescope project comes into play.
Using a network of eight radio telescopes, scientists were able to
take images of the black hole over a period of around six months.
Critically timed, using atomic clocks, the telescopes imaged the area
of sky containing the black hole and collected the data, swapping
from one telescope array to the next as the Earth rotated.

in curved spacetime predicts that event horizons emit Hawking
radiation, with the same spectrum as a black body of a temperature
inversely proportional to its mass. This temperature is on the order
of billionths of a kelvin for black holes of stellar mass, making it
essentially impossible to observe.”

Not that long ago a black hole was just a collection of theories

and mathematics written down on paper, speculated only by the
brightest minds of our time. However, as with most things scientific,
our understanding of the universe and our abilities to read it have
greatly improved and, with the culmination of years of el
hard work by a collaboration of observatories,
scientists and engineers, we got our first
image of a black hole.

This data was then collated across all the telescope arrays to the

s RESULTS
"“,i—n:v >
"~ Theend result is, of course, the image of the black hole at the centre

tune of over a thousand hard drives, which came to an astonishing5 of the M87§aalaxy that's surrounded by a ring of burning gasses. The
Petabytes of raw data. The problem now was collating all that data resolution isn't great, as the team have since admitted, but, as they

into a workable form and presenting it as an image.

Katie Bouman, a Ph.D. in electrical
engineering and computer science
from MIT, was pivotal in creating the
Python code that was able to stitch

all that data together and form the
eventual, historic image of a black hole.

Bouman used a number of Python
libraries to achieve the result, Numpy,
Scipy, Pandas, Jupyter, Matplotlib

and Astropy, plus some unique custom Python code —which can be
found on Github at https://github.com/achael/eht-imaging.

also state, give it a couple of years and they'll be able to increase the
image resolution significantly.

-

All this is thanks to some clever Python code and some very brilliant
scientists and engineers.

@ Working with Data

o3

X e 5

X * s

o5t (%) 00K
2} X .
) {3 -

. A L%

62 www.pclpublications.com

Crommmrons @

~ Working
- with Data

Data is everything; it can topple governments, change
election results, and tell us the secrets of the universe. Over
} 5 these coming pages we look at how you can create lists,

’ tuples, dictionaries and multi-dimensional lists, and then

5 4 how you can use them to forge exciting and useful programs.
In addition, you will learn how you can use the date and time
functions, write to les to your system and even create

graphical user interfaces that will take your coding skills to
new levels and into new project ideas.

www.pclpublications.com 63

Working with Data

Lists

Lists are one of the most common types of data structures you will come across in

Python. A list is simply a collection of items, or data if you prefer, that can be accessed
as a whole, or individually if wanted.

WORKING WITH LISTS

Lists are extremely handy in Python. A list can be strings, integers and also variables. You can even include functions in lists,
and lists within lists.

STEP 1 Alistis a sequence of data values called items. You STEP 3 You can also access, or index, the last item in a list by
create the name of your list followed by an equals using the minus sign before the item number [-1],
sign, then square brackets and the items separated by commas; or the second to last item with [-2] and so on. Trying to reference an
note that strings use quotes: item thatisn’tin the list, such as [10] will return an error:
numbers = [1, 4, 7, 21, 98, 156] numbers [-1]
mythical creatures - [“Unicorn”, “Balrog”, mythical creatures[-4]
“Vampire”, “Dragon”, “Minotaur”] _ -
e _ Python 3.4.2 Shell -ox
Fle Edit Shell Debug Options Windows Help ” ?éégogg?lzn’gd?i:zi(Oct 19 2014, 13:31:11) o |
Bython 3.4.2 (default, Oct 10 2014, 13:31:11) af | Type “copyright”, “"credits” or "license()" for more information.
[GCC 4.9.1] on linux | | 233 umbors = 1, 4, 7.2 s] i M .
Type “copyright”, “credits” or “license()" for more information. 1 >>> mythical_creatures = [“Unicorn”, “Balrog"”, “Vampire”, “Dragon”, "Minotaur"]
>>> numbers = [1, 4, 7, 21, 98, 156] >3> mmbers ‘
>>> Imy(mcal_creawres = [“Unicorn”, “Balrog”, "Vampire", "Dragon”, "Minotaur"] i i:) :(nn;érﬂé]”' 156)
>>> 21

| >>> mythical_creatures

[[*Unicorn', “Balrog’, ‘Vampire'. 'Dragon’, ‘Minotaur')
| >>> mythical_creatures[3]

*Dragon’

>>> numbers(-1]

156

>>> numbers[-2]
98

>>> mythical_creatures[-1]

‘Minotaur"

| >>> mythical_creatures[-4]

| *Balrog’

|

STEP 2 Once you've defined your list you can call each STEP 4 Slicing is similar to indexing but you can retrieve
by referencing its name, followed by a number. Lists multiple items in a list by separating item numbers

start the first item entry as 0, followed by 1, 2, 3 and so on. with a colon. For example:
For example: A
numbers

Will output the 4 and 7, being item numbers 1 and 2. Note that the
To call up the entire contents of the list. returned values don't include the second index position (as you
would numbers[1:3] to return 4, 7 and 21).

numbers [3]
. Type ~copyr 2 dits” or “1 -t f . [
To call the third from zero item in the list (21 in this case). et BTE SIS 0, gay) o moresdvlomation ‘
>>> mythical_creatures = [“Unicorn”, “Balrog", “Vampire", “"Dragon®, "Minotaur”]
>>> numbers ‘
= - " (1. 4, 7, 21, 98, 156)

>>> numbers[3

Python 3.4.2 Shell - o x = 0l
2 : : >>> mythical_creatures
[Fa)/Edcs Shiel *Debg | Options Windows | Help {-Unitorn-. “Balrog.. “Vampire:, ‘Dragon’. ‘Minotaur']
Python 3.4.2 (default. Oct 19 2014, 13:31:11) >>> mythical_creatures(3]
[GCC 4.9.1] on linux Dragon |
Type “"copyright”, “credits” or “license()" for more information. >>> numbers[-1]
>>> numbers = [1, 4, 7, 21, 98, 156] ==
>>> mythical_creatures = [“Unicorn”, “Balrog”, “Vampire", “"Dragon”., “Minotaur"]
>>> numbers)
(1. 4, 7, 21, 98, 156] >>> mythical_creatures[-1]
>>> numbers[3] ‘Minotaur*
21

AT

T

>>> numbers[-2]
98

-

>>> mythical_creatures[-4]
>>> mythical_creatures *Balrog’
[*Unicorn', ‘Balrog', 'Vampire', ‘Dragon’, 'Minotaur'] >>> numbers[1:3]
>>> mythical_creatures[3] 4. 71 |
‘Dragon* >>> numbers[0:4] |
>>>|g i, 4, 7, 21
>>> numbers[3:5]
| 21, 98] |
| >>> numbers[1:]
| 4. 7, 21, 98, 156]
| > | |

64 www.pclpublications.com

STEP 5 You can update items within an existing list, remove
items and even join lists together. For example, to
join two lists you can use:
everything = numbers + mythical creatures
Then view the combined list with:

everything

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) —
[GCC 4.9.1] on linux

Type “"copyright”, “credits” or "license()" for more information.
>>> numbers = [1, 4, 7, 21, 98, 156]

>>> mythical_creatures = ["Unicorn”, “Balrog",
>>> everything = numbers + mythical_creatures
>>> everything

[1. 4, 7, 21, 98, 156, 'Unicorn', 'Balrog', 'Vampire', 'Dragon', 'Minotaur']
>>>

i .

STEP 6 Items can be added to a list by entering:

numbers=numbers+ [201]

“Vampire®, “"Dragon”, "Minotaur"]

Or for strings:
mythical creatres=mythical_ creatures+[“Griffin”]
Or by using the append function:

mythical creatures.append(“Nessie”)
numbers . append (278)

>>> numbers = [1, 4, 7, 21, 98, 156]
>>> mythical creatures = ["Unicorn”, "Balrog”, "Vampire", "Dragon”, "Minotaur"]
>>> numbers
[1. 4, 7, 21, 98, 156]
>>> mythical_creatures
['Unicorn’, "Balrog', 'Vampire', 'Dragon’, 'Minotaur']
>>> numbers=numbers+[201]
>>> numbers
[1. 4, 7, 21, 98, 156, 201)
>>> mythical creatures=mythical creatures+["Griffin"]
>>> mythical_creatures
| ['Unicorn’, 'Balrog', 'Vampire', 'Dragon’, 'Minotaur', 'Griffin']
>>> mythical_creatures.append(“llessie”)
>>> mythical_creatures
['Unicorn', ‘*Balrog', 'Vampire', 'Dragon’', 'Minotaur', 'Griffin’', ’Nessie']
>>> numbers.append(278)
>>> numbers
[1. 4, 7, 21, 98, 156, 201, 278]

v
v
v

=

STEP 7

del numbers[7]

Removal of items can be done in two ways. The first
is by the item number:

Alternatively, by item name:

mythical creatures.remove (“Nessie”)

>>> pumbers

[1. 4, 7, 21, 98, 156]

>>> mythical_creatures

['Unicorn', 'Balrog', 'Vampire', 'Dragon’, 'Minotaur']

>>> numbers=numbers+[201]

>>> numbers

[1. 4, 7, 21, 98, 156, 201)

>>> mythical_creaturesemythical_creatures+["Griffin"]

>>> mythical_creatures

['Unicorn’, "Balrog', 'Vampire', ‘Dragon’, 'Minotaur’, 'Griffin']
>>> mythical_creatures.append(“llessie”)

>>> mythical_creatures

[‘Unicorn', ‘Balrog'. ‘Vampire', ‘Dragon‘. ‘Minotaur‘', ‘Griffin', ‘Nessie']
>>> numbers.append(278)

>>> numbers

[1. 4, 7, 21, 98, 156, 201, 278]

>>> del numbers(7]

>>> numbers

(1. 4, 7, 21, 98, 156, 201]

>>> mythical_creatures.remove(“lessie”)

>>> mythical_creatures

['Unlicorn'. 'Balrog', 'Vampire', 'Dragon’, 'Minotaur', 'Griffin']
>>>

[>>> mythical creatures = [“Unicorn”, "Balrog”, "Vampire", "Dragon”, "Minotaur] =

C

STEP 8 You can view what can be done with lists by entering
dir(list) into the Shell. The output is the available
functions, for example, insert and pop are used to add and remove
items at certain positions. To insert the number 62 at item index 4:

numbers.insert (4, 62)
To remove it:
numbers .pop (4)
Iype “copyrignt”, “Creaits” or “lLicense() TOr more intormation.

>>> dir(list)

__contains delattr_', '_delitem_', '_dir_ | (M
format__" . '_getattribute__', '__getitem__"
iadd_ ", " init_c, '__iter_ ', °_ le_ " .‘
ik (', '_reduce__', '__reduce_e
reversed ', * *_setitem__', '_s

5 ‘_sub:lasshook__' v . ‘copy’, ‘count’, Tex
“pop’., 'remove’, ‘reverse’, 'sort']
7. 21, 98, 156)

[1. 4, 7, 21, 98, 156]
>>> numbers.insert(4, 62)
>>> numbers

1. 4, 7, 21, 62, 98, 156]

>>> numbers.pop(4)

>>> numbers
(4 IA, 7. 21, 98, 156]

STEPO

list (“David”)

You also use the list function to break a string down
into its components. For example:

Poa g

Breaks the name David into ‘D', ‘a’, V', ‘', ‘d". This can then be passed
to a new list:

name=1ist (“David Hayward”)

name
age=[44]

user = name + age
user

_i‘

Python 3.4.2 (default, Oct 19 2014,
[GCC 4.9.1] on linux

Type "copyright”, "credits” or "license()" for more information.
>>> list("David")

['n", *a*, 'v’, ‘i', 'd'}

>>> name=list(“David Hayward")

>>> name

['o*, *a’, ‘v', ‘i‘,
>>> age=[44]
>>> user = name + age

tdh, ot L CHYL tat, 'y, 'w', tat, 'rt, td')
D tats v il Y, M At Y WL tats Tt NdY, 44

>>> I' ! ! ! ! ! ! ! ! ! ! i ! ﬂ

Based on that, you can create a program to store
someone’s name and age as a list:

P10

name=input (“*What’s your name? “)
lname=1ist (name)

age=int (input (*How old are you: “))
lage=[age]
user = lname + lage

The combined name and age list is called user, which can be called
by entering user into the Shell. Experiment and see what you can do.

-8 x ramelist py - ome/pi/Docu
Ele Edt Fgrmat Run Qptions Windows |

name=input(s your name? ")
Iname=1isL(
age=int(input(“How old are you: "))
1age=(age]

vih
Ele Edt Shel Debug Options Windows Help
Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1] on Li
Type “copyright”.

“credits” or “license()" for more information.
RESTART

What's your name? Conan of Cimmeria
How old are you: 44

>>> user

[5€0. for, nt, tat, nt. ot v, tet, MFLt L L CHT. e, me, tet, e cdl,
‘2l a4

user = Inane + lagd

www.pclpublications.com

Working with Data

Tuples

Tuples are very much identical to lists. However, where lists can be updated, deleted or

changed in some way, a tuple remains a constant. This is called immutable and they're
perfect for storing fixed data items.

THE IMMUTABLE TUPLE

Reasons for having tuples vary depending on what the program is intended to do. Normally, a tuple is reserved for something
special but they're also used for example, in an adventure game, where non-playing character names are stored.

STEP 1 Atuple is created the same way as a list but in this
instance you use curved brackets instead of square

brackets. For example:

months=(“January”, “February”, “March”, “April”,

“June”)

“May”,
months

STEP 3 You can create grouped tuples into lists that contain
multiple sets of data. For instance, here is a tuple
called NPC (Non-Playable Characters) containing the character name
and their combat rating for an adventure game:

NPC=[(“*Conan”,
95)i]

109y,

{(*Belit”, 80), (“Waleria”,

Python 3.4.2 Shell Python 3.4.2 Shell
Eile Edit Shell Debug Options Windows Help File Edit Shell Debug Options Windows Help
Python 3.4.2 (default, Oct 19 2014, 13:31:11) A Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al

[6CC 4.9.1] on linux

Type "copyright”, "credits” or "license()" for more information.
>>> months=(“January”, “February“, “March®, “April”, “May”, "June")
>>> months

('Jalnuary‘. ‘February®. ‘March'., 'April‘, ‘May‘.
>>>

*June’)

STEP 2

range, i.e.:

Just as with lists, the items within a named tuple can
be indexed according to their position in the data

months [0]
months [5]

However, any attempt at deleting or adding to the tuple will result
in an error in the Shell.

Python 3.4.2 Shell - o ox ‘
File Edit Shell Debug Options Windows Help J
Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al

[GCC 4.9.1] on linux
Type "copyright", “"credits" or "license()" for more information.

>>> months=("January”, "February”, "March", "April", "May", “June")
>>> months
(*January', ‘February', 'March*., ‘April’, ‘May‘. 'June') 4‘
>>> months[0]
*January’
>>> months[5]
June
>>> months.append(“July")
Traceback (most recent call last):
File "<pyshell#4>", line 1, in <module>

months.append(“July")

AttributeError: 'tuple’ object has no attribute 'append’

>>> |

66 www.pclpublications.com

[GCC 4.9.1] on linux

Type "copyright”, "credits" or "license()" for more information.
>>> lNPC=(("(DV\an",|00), ("Belit", 80), ("valeria”, 95)]

>>>

STEP 4 Each of these data items can be accessed as a
whole by entering NPC into the Shell; or they can be

indexed according to their position NPC[0]. You can also index the
individual tuples within the NPC list:

NPC[0] [1]

Will display 100.

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help I

Python 3.4.2 (default, Oct 19 2014, 13:31:11) =
[GCC 4.9.1] on linux

Type "copyright”, “"credits" or "license()" for more information.
>>> NPC=[("Conan”. 100), (“Belit", 80). (“Valeria®, 95)]

>>> NPC

[(‘Conan‘, 100), ('Belit', 80), (‘valeria‘', 95)] i
>>> NPC[0] |
(*Conan’. 100) |
>>> NPC[0][1]
100

>>>

STEP 5 It's worth noting that when referencing multiple
tuples within a list, the indexing is slightly different

from the norm. You would expect the 95 combat rating of the
character Valeria to be NPC[4][5], butit's not. It's actually:

NPC[2] [1]

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) —
[GCC 4.9.1] on linux

Type "copyright”. "credits" or "license()" for more information.
>>> NPC=[("Conan"”, 100), ("Belit", 80), ("valeria", 95)]

>>> NPC[2][1]

95

5> |

STEP 6 This means of course that the indexing follows thus:

0 Tl
0l; 2

0, 2.0
il 28
450

Which as you can imagine, gets a little confusing when you've got a
lot of tuple data to deal with.
Type "copyright", "credits" or "license()" for more information.

>>> NPC=[("“Conan™, 100), ("Belit", 80), ("valeria", 95)]
>>> NPC[0] |

(*Conan*., 100)
>>> NPC[0][0] |-
‘Conan’

>>> NPC[O][1]
100

>>> NPC[1]

('Belit’, 80)

>>> NPC[1][0]

‘Belit’

>>> NPC[1][1]

80

>>> NPC[2]

(*valeria‘, 95)

>>> NPC[2][0]

'Valeria® ‘

>>> NPC[2][1]
95

STEP 7 Tuples though utilise a feature called unpacking,
where the data items stored within a tuple are

assigned variables. First create the tuple with two items (name and
combat rating):

NPC= (“Conan”,

100)

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help ‘
Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al

[GCC 4.9.1] on linux

Type "copyright", "credits" or "license()" for more information.
>>> NPC=("Conan”, 100)

>>> | |

@

Now unpack the tuple into two
corresponding variables:

S

P8

(name, combat_rating)=NPC

You can now check the values by entering name and combat_rating.

Python 3.4.2 Shell
File Edit Shel Debug Options Windows Help |

Python 3.4.2 (default, Oct 19 2014, 13:31:11) = ™
[GCC 4.9.1] on linux
Type “"copyright", “"credits” or "license()" for more information.

>>> NPC=("Conan”, 100)

>>> (name, combat_rating)=NPC
>>> name

‘Conan’

>>> combat_rating

100

>>>

STEP 9 Remember, as with lists, you can also index tuples
using negative numbers which count backwards
from the end of the data list. For our example, using the tuple with
multiple data items, you would reference the Valeria character with:

NPC[2] [-0]
Python 3.4.2 Shell -0 x ‘
Eile Edit Shell Debug Options Windows Help ’
Python 3.4.2 (default, Oct 19 2014, 13:31:11) &

[GCC 4.9.1] on linux

Type "copyright”, “"credits" or "license()" for more information.
>>> NPC=[("Conan", 100)., ("Belit”, 80), ("valeria”, 95)]

>>> NPC[2][-0]

‘Valeria®

>>> |

STEP 10 You can use the max and min functions to find the
highest and lowest values of a tuple composed of

numbers. For example:

numbers={10.3, 23, 45.2, 108.3, 6.1, 56.7, 939)

The numbers can be integers and floats. To output the highest and
lowest, use:

print (max (numbers))
print (min (numbers))

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help
Python 3.4.2 (default, Oct 19 2014, 13:31:11) =

[GCC 4.9.1] on linux

Type “copyright”, “credits" or “license()" for more information. "
>>> numbers=(10.3, 23, 45.2, 109.3, 6.1, 56.7, 99)

>>> print(max(numbers))
109.3

>>> print(min(numbers))
6.1

>3 |

www.pclpublications.com

Working with Data>

Dictionaries

Lists are extremely useful but dictionaries in Python are by far the more technical way

of dealing with data items. They can be tricky to get to grips with at First but you'll soon
be able to apply them to your own code.

KEY PAIRS

A dictionary is like a list but instead each data item comes as a pair, these are known as Key and Value. The Key part must be
unique and can either be a number or string whereas the Value can be any data item you like.

STEP 1 Let's say you want to create a phonebook in Python.
You would create the dictionary name and enter
the data in curly brackets, separating the key and value by a colon
Key:Value. For example:

phonebook= { “Emma” : 1234, “Daniel”: 3456, “Hannah”:
6789}

Python 3.4.2 Shell =maa
Eile Edit sShell Debug Options Windows Help |

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1] on linux

Type “copyright”, “credits" or "license()" for more information.
>>> Iphonebook=("a~rma": 1234, “"Daniel": 3456, "Hannah": 6789}

>

>>>

STEP 2 Just as with most lists, tuples and so on, strings
need be enclosed in quotes (single or double),
whilst integers can be left open. Remember that the value can be
either a string or an integer, you just need to enclose the relevant
one in quotes:

phonebook2={"David”: “0987 654 321"}

Python 3.4.2 Shell =
Eile Edit Shell Debug Options Windows Help '
Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al
[GCC 4.9.1] on linux
Type "copyright”, "credits” or "license()" for more information.

>>> phonebook={ “Emma": 1234, "Daniel”: 3456, "Hannah": 6789}
>>> lphonebookZ-("Dav;d": 0987 654 321"}
>>>

68 www.pclpublications.com

STEP 3 As with lists and tuples, you can check the contents
of a dictionary by giving the dictionary a name:
phonebook, in this example. This will display the data items you've
entered in a similar fashion to a list, which you're no doubt familiar
with by now.

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) =
[GCC 4.9.1] on linux

Type “"copyright", "credits" or "license()" for more information.
>>> phonebook={"Emma“”: 1234, "Daniel"”: 3456, "Hannah": 6789}

-E!X

>>> phonebook2={"David": “0987 654 321"}

»>>> phonebook

{'Halnnah': 6789, 'Emma’: 1234, 'Daniel': 3456}
>>>

STEP 4 The benefit of using a dictionary is that you
can enter the key to index the value. Using the

phonebook example from the previous steps, you can enter:
phonebook [“Emma”]

phonebook [“Hannah”]

Python 3.4.2 Shell - o x ‘
File Edit Shell Debug Options Windows Help |

Python 3.4.2 (default, Oct 19 2014, 13:31:11) —
[GCC 4.9.1]) on linux

Type "copyright", "credits" or "license()" for more information.
>>> phonebook={"Emma"”: 1234, "Daniel": 3456, “Hannah": 6789}
>>> phonebook2={"David": "0987 654 321"}

»>> phonebook

{'Hannah’: 6789, 'Emma‘: 1234, ‘Daniel': 3456}

>>> phonebook["Emma"]

1234

»>>> phonebook["Hannah"]

6789

>>>

STEP 5

value items like:

Adding to a dictionary is easy too. You can include
a new data item entry by adding the new key and

phonebook [“David”] =
phonebook

"0987 654 321"

Python 3.4.2 Shell
Elle Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) f
[GCC 4.9.1] on linux

Type “"copyright", “credits" or "license()" for more information.
>>> phonebook={"Emma": 1234, "Daniel“: 3456, "Hannah": 6789}

>>> phonebook2={"David": "0987 654 321"}

>>> phonebook

{'Hannah': 6789, 'Emma': 1234, 'Daniel’: 3456}

>>> phonebook["Emma”]

1234

>>> phonebook["Hannah"]

6789

>>> phonebook(["David"] = "0987 654 321"

>>> phonebook

{'Hannah': 6789, 'Emma': 1234, 'David’': '0987 654 321', 'Daniel':

3456}
>>> |

y§ =203 You can also remove items from a dictionary by
issuing the del command followed by the item’s

key; the value will be removed as well, since both work as a pair of
data items:

del phonebook [“*David”]

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help I

Python 3.4.2 (default, Oct 19 2014, 13:31:11) —
[GCC 4.9.1]) on linux

Type "copyright", "credits" or "license()" for more information.

>>> phonebook={"Emma": 1234, "Daniel": 3456, "Hannah": 6789}

>>> phonebook2={"David": "0987 654 321"}

>>> phonebook

{'Hannah’: 6789, 'Emma': 1234, 'Daniel’: 3456}

>>> phonebook["Emma™]

1234

>>> phonebook[“Hannah"]

6789

>>> phonebook["David”] = "0987 654 321"

>>> phonebook

{'Hannah’: 6789, 'Emma’': 1234, 'David': '0987 654 321°', 'Daniel’': 3456}
>>> del phonebook[“David"]

>>> phonebook

{'Hannah’: 6789, 'Emma‘: 1234, ‘'Daniel’: 3456}

|

STEP 7 Taking this a step further, how about creating a
piece of code that will ask the user for the dictionary
key and value items? Create a new Editor instance and start by
coding in a new, blank dictionary:

phonebook={}

e ——
=i %
‘ File Edit Format Run

Python 3.4.2 (default, Oct 19 2014, 13:31:11) B
x |

Python 3.4

File Edit Shell Debug Options Windows Help

phonebook={}
[GCC 4.9.1] on linu:

Type “copyright”, "credits” or “license()" for more information.
>>>

|

<Dictionaries

STEP 8 Next, you need to define the user inputs and
variables: one for the person’s name, the other
for their phone number (let’s keep it simple to avoid lengthy
Python code):

name=input (“Enter name: “)

"))

number=int (input (“Enter phone number:

Dictin.py - /nome/pi/Documents/Python Code/Dictin.py (3.4.2)

Eile Edit Format Run Options Windows Help

>

phonebook={}

name=input(“Enter name: “)
number=int(input(“Enter phone number: "))

|

STEP 9 Note we've kept the number as an integer instead
of a string, even though the value can be both
an integer or a string. Now you need to add the user's inputted
variables to the newly created blank dictionary. Using the same
process as in Step 5, you can enter:

phonebook [name] = number

Dictin.py - fhome/pi/Documents/Python tinpy (3.4.2) o x

File Edit Format Run Options Windows Help
phonebook={} A

name=input(“Enter name: ")
number=int(input("Enter phone number: "))

H rhonebank[nane] = number

STEP 10 Now when you save and execute the code, Python
will ask for a name and a number. It will then insert
those entries into the phonebook dictionary, which you can test by
entering into the Shell:

phonebook
phonebook [“David”]

If the number needs to contain spaces you need to make it a string,
so remove the int part of the input.

-ox
Elle Edt Shell Debug Options Windows Help _ Ele Edt Format Bun Qptions Windows Help
[Python 3.4.2 (default, Oct 19 2014, 13:31:11) T ook

[6€C 4.9.1) on linux Hobod ey
Type “copyright”. "credits™ or "license()” for more information.
RESTART

Rameeinput(“Enter nam
“Enter p

Enter name: David
Enter phone number: 09876
by book

onet
£°David’: 9876}
35> phonk

6

phonabook[name) = (number)

ebook(“0avid"]

>>> RESTART

RESTART

Enter name: Bob
Enter phone number: 0987 634 3321 3344

>> phonet
| (*Bob’: [*0987 634 3321 3344°))

www.pclpublications.com

E Working with Data>

Splitting and

Joining Strings

When dealing with data in Python, especially from a user’s input, you will undoubtedly

come across long sets of strings. A useful skill to learn in Python programming is being
able to split those long strings for better readability.

STRING THEORIES

You've already looked at some list functions, using .insert, .remove, and .pop but there are also functions that can be applied

to strings.

STEP 1 The main tool in the string function arsenal is .split().
With it you're able to split apart a string of data,

based on the argument within the brackets. For example, here’s a
string with three items, each separated by a space:

text="Daniel Hannah Emma”

Python 3.4.2 Shell =ooaxil
File Edit Shell Debug Options Windows Help ‘

Python 3.4.2 (default, Oct 19 2014, 13:31:11) -
[GCC 4.9.1] on linux W
Type “"copyright", "credits" or "license()" for more information.
>>> text="Daniel Hannah Emma" !
>>>

I f

STEP 2

names=text.split (™ ")

Now let's turn the string into a list and split the
content accordingly:

Then enter the name of the new list, names, to see the three items.

Python 3.4.2 Shell -oxj
Eile Edit Shell Debug Options Windows Help ‘
Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al
[GCC 4.9.1] on linux I
Type "copyright”, "credits” or "license()" for more information.

>>> text="Daniel Hannah Emma"
>>> names=text.split(" ")
>>> names

['Daniel’. 'Hannah®, 'Emma’]
>>>

www.pclpublications.com

STEP 3 Note that the text.split part has the brackets,

quotes, then a space followed by closing quotes
and brackets. The space is the separator, indicating that each list
item entry is separated by a space. Likewise, CSV (Comma Separated
Value) content has a comma, so you'd use:

text="January, February, March, April, May, June”
months=text.split (“,”)
months

Python 3.4.2 Shell -nox M
File Edit Shell Debug Options Windows Help |‘

Python 3.4.2 (default, Oct 19 2014, 13:31:11) &
[GCC 4.9.1] on linux Cl

Type “copyright”. “credits" or "license()" for more information.
>>> text="January,February March,April,May,June”

>>> months=text.split(",")

>>> months

[‘'January', 'February', ‘March', ‘April‘', 'May’.
e |
>>>

“June’)

STEP 4

name=1ist (“David”)

You've previously seen how you can split a string
into individual letters as a list, using a name:

name

IR RN T

The returnedvalue is ‘D', ‘a’, V', ‘', ‘d’. Whilst it may seem a little
useless under ordinary circumstances, it could be handy for creating
a spelling game for example.

y T =
Python 3.4.2 Shell - Q%

File Edit Shell Debug Options Windows Help ‘

Python 3.4.2 (default, Oct 19 2014, 13:31:11) =

[6GCC 4.9.1] on linux

Type "copyright”, "credits” or "license()" for more information.

>>> pame=list("David")

>>> name \

o, *a*, ‘v, 1%, 'd'] !“

> |

STEP 5 The opposite of the .split function is .join, where
you will have separate items in a string and can join

them all together to form a word or just a combination of items,
depending on the program you're writing. For instance:

alphabet=" " . j Oil’l([\\all " Ilbll i Ilcll " " dll 5 Ilell])
alphabet

This will display ‘abcde’ in the Shell.

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help l

Python 3.4.2 (default, Oct 19 2014, 13:31:11) =
[GCC 4.9.1] on linux

Type “copyright”, “credits”
>>> alphabet="".join(["a",
>>> alphabet

*abcde’

>>> y

“license()" for more information.
", "d"."e"])

| .

STEP 6

form the name:

You can therefore apply .join to the separated name
you made in Step 4, combining the letters again to

name="".join (name)
name

We've joined the string back together, and retained the list called
name, passing it through the .join function.

Python 3.4.2 Shell = =)
Flle Edit She|l Debug Options Windows Help |

Python 3.4.2 (default. Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux
Type "copyright", "credits" or "license()" for more information. m
>>> name=list("“David")

d'] '

>>> name

1D Al ‘v vEey &
>>> name="".join(name)
>>> name

‘David*

>>> |

STEP7

sentence:

A good example of using the .join function is when
you have a list of words you want to combine into a

list=["“Conan”, “raised”, “his”, “mighty”, “sword”,

“and”, “struck”, “the”, “demon”]
text=" “.join(list)
text

Note the space between the quotes before the .join function (where

(Splitting and Joining Strings

As with the .split function, the separator doesn't
have to be a space, it can also be a comma, a full

stop, a hyphen or whatever you like:

colours=[“"Red”, “Green”, “Blue”]

eoel=", % .jein(colours)
col

Python 3.4.2 Shell
Eile Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al
[GCC 4.9.1] on linux

Type "copyright”, "credits” or "license()" for more information.

>>> list=["Conan”, “raised”, "his", "mighty", "sword”, "and", "struck", “the", “demon"]
>>> text=" ".join(list)

>>> text

“Conan raised his mighty sword and struck the demon’
>>> colours=["Red"”, “Green", "Blue”]

>>> col=".".join(colours)

>>> col

'Red.Green,Blue”

>>>

STEP 9

title="conan the cimmerian”

There's some interesting functions you apply to a
string, such as .capitalize and .title. For example:

title.capitalize ()
citle.bitlel)

Python 3.4.2 Shell -8 x
File Edit Shell Debug Options Windows Help J ‘
Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al
[GCC 4.9.1] on linux
Type “copyright”, “"credits" or “license()" for more information.
>>> title="conan the cimmerian"
>>> title.capitalize()
'Conan the cimmerian’

>>> title.title()
"Conan The Cimmerian’
>>> |

STEP 10 R&M=h also use logic operators on strings,
with the ‘in" and ‘not in’ functions. These enable
you to check if a string contains (or does not contain) a sequence
of characters:

message="Have a nice day”
“nice” in message

"bad” not in message
“day” not in message

there were no quotes in Step 6's .join). “night” in message
Python 3.4.2 Shell -0 x
Flle Edit Shell Debug Options Windows Help J File Edit Shell Debug Options Windows Help “m
Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al

[6CC 4.9.1] on linux
Type “copyright”. "credits” or "license()" for more information.

>>> list=["Conan", “raised”. "his". "mighty". “sword". "and", "struck", “"the". “demon"]
>>> text=" ".join(list)
>>> text

'(nnlan raised his mighty sword and struck the demon’
>>>

Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux
Type “copyright”, “credits" or “"license()" for more information.

>>> message="Have a nice day |
>>> “nice” in message

True

>>> “bad" not in message

True

>>> “day” not in message

False

>>> “night" in message

False

>>>

www.pclpublications.com

Working with Data

Formatting Strings

When you work with data, creating lists, dictionaries and objects you may often want

to print out the results. Merging strings with data is easy especially with Python 3, as
earlier versions of Python tended to complicate matters.

STRING FORMATTING

Since Python 3, string formatting has become a much neater process, using the .Format function combined with curly brackets.
It's a more logical and better formed approach than previous versions.

STEP 1

name="Conan”

The basic formatting in Python is to call each
variable into the string using the curly brackets:

print (“The barbarian hero of the Hyborian Age is:
{}”.format (name))

Python 3.4.2 Shell - B %
File Edit Shell Debug Options Windows Help ‘

Python 3.4.2 (default, Oct 19 2014, 13:31:11) a1
[GCC 4.9.1] on linux

Type "copyright”, "credits" or "license()" for more information.
>>> name="Conan”

>>> print("The barbarian hero of the Hyborian Age is: {}".format(name)) I

The Ibarbarlan hero of the Hyborian Age is: Conan
>>>

STEP 2 Remember to close the print function with two sets
of brackets, as you've encased the variable in one,
and the print function in another. You can include multiple cases of
string formatting in a single print function:

name="Conan”

place="Cimmeria”

print (*{} hailed from the North, in a cold land
known as {}”.format (name, place))

Python 3.4.2 Shell - o x
Eile Edit Shell Debug Qptions Windows Help J‘
Python 3.4.2 (default, Oct 19 2014, 13:31:11) £
[6CC 4.9.1]) on linux
Type "copyright”, "credits” or "license()" for more information.]

>>> name="Conan”

>>> place="Cimmeria”

>>> print(“{} hailed from the North, in a cold land known as {}".format(name, place))
Ccnaln hailed from the North, in a cold land known as Cimmeria

>>>

72 www.pclpublications.com

STEP 3 You can of course also include integers into the mix:

number=10000
print (*{} of {} was a skilled mercenary,
and thief too. He once stole {} gold from a

number))
Eile Edt Shell Debug Qptions Windows Help

_uxw
Python 3.4.2 (default, Oct 19 2014, 13:31:11) &l |
[6CC 4.9.1] on Linux
~, "credits” or "license()" for more information.

merchant.” . format (name, place,

Python 342 Shell

>>> places"Cimneria
>>> print(“(} hailed from the North. in a cold land known as {}*.format(name. place))

Conan hailed from the North, in a cold land knon as Cimmeria

>>> number=10000

>>> print(*{} of {} was a skilled mercenary, and theif too. He once stole (} gold from a merchant.”.format(name, p
lace. number))

Conan of Cinmeria was a skilled mercenary, and theif too. He once stole 10000 gold from a merchant.

STEP 4 There are many different ways to apply string
formatting, some are quite simple, as we've shown
you here; others can be significantly more complex. It all depends
on what you want from your program. A good place to reference
frequently regarding string formatting is the Python Docs webpage,
found at www.docs.python.org/3.1/library/string.html. Here, you
will find tons of help.

- G 46+ aoe 8=

Eommat_t101a{vabe, formot_spec)

coavert,_tialalrotn, comersan)

et o 0 '

7.1.3. Format String Syntax

[T s,

episcement b
el s, o b ascaped By douting. (80 1

The ramear for 8 repiacemant faid s foows

The sy 15 8 e
mbers 0

v fomat s a0 0. 1.2 i sequance o stvbse
opssons ot

v n tht e The o

Changed n vesion 31 Th postonal agument specsorscan e omited 50 1) 11 5 squvntio 45 11

Sore smpie ket s examen

STEP 5 Interestingly you can reference a list using the string
formatting function. You need to place an asterisk in

front of the list name:

numbers=1, 3, 45, 567546, 3425346345
print (“Some numbers: {}, {}, {}., {}., {}”.
format (*numbers))

Python 3.4.2 Shell - o x

Elle Edit Shell Debug Options Windows Help "‘
Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al
[GCC 4.9.1] on linux

Type “"copyright”, "credits” or "license()" for more information.

>>> numbers=1, 3, 45, 567546, 3425346345

>>> print("Some numbers: {}, {}. {}. {}. {}".format(*numbers))
Some numbers: 1, 3, 45, 567546, 3425346345

33>

U |

STEP 6 With indexing in lists, the same applies to calling a
list using string formatting. You can index each item

according to its position (from 0 to however many are present):

numbers=1, 4, 7, 9
print (*“More numbers: {3}, {0}, {2},
{1}.”.format (*numbers))

Python 3.4.2 Shell
Eile Edit Shell Debug Options Windows Help ‘»

Python 3.4.2 (default. Oct 19 2014, 13:31:11) al
[GCC 4.9.1] on linux

Type "copyright”, "credits" or "license()" for more information. '
"
|

>>> numbers=1, 4, 7, 9
>>> print(“More numbers; {3}. {0)}. {2}.
STEP 7 And as you probably suspect, you can mix strings
and integersin a single list to be called in the

More numbers: 9, 1, 7
.Format function:

(1}.".format(*numbers))

>>> |

—

characters=[“Conan”,
20]
print (“{0} is {3} years old. Whereas {1} is {4}
years old.”.format (*characters))

*Belait”, "Valeria’, 19, 27,

I Python 3.4.2 Shell _oox
Eile Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[6CC 4.9.1] on linux

Type "copyright”, "credits” or "license()" for more information.

>>> characters=[“Conan”, “Belit", "Valeria®, 19, 27, 20

>>> print ("{0} is {3} years old. Whereas {1} is {4} years old.".format(*characters))
Conan is 19 years old. Whereas Belit is 27 years old.

>>>

(Formatting Strings

STEP 8

name=input (“*What’s your name? “)

You can also print out the content of a user’s input
in the same fashion:

print (“Hello {}.”.format (name)

m testnarmes py - /home/pi/testnames py (3.42
Ele EdR Shel Debug Gptions Windows Help [l Cdt famet fun Options Windows Liel
Python 3.4.2 (default, Oct 19 2014, 13:31711) sip—= your_nome> -)

16C 4.9.1] on inux
Type "copyright”. “credits" or "license()" for more information.
4 RESTART

your nome? David
Do

()

STEP 9

name=input (“*What’s your name? “)

You can extend this simple code example to display
the first letter in a person’s entered name:

print (“Hello {}.”.format (name))

Iname=1ist (name)

print (“The first letter of your name is a {0}”.
format (*1name))

py - inome/pitestnames py (3.4.2)

Ble Edt Shel Debug Qstions Yndows Help.

Python 3.4.2 (default. Oct 19 2014, 13:31:11)

166C 4.9.1] on Linux

Type “opyright”. “credats* or *license()" for more nformation.
RESTART

< your name? David
o 0avid.

RESTART

STEP 10 You can also call upon a pair of lists and reference
them individually within the same print function.

Looking back the code from Step 7, you can alter it with:

names=[“Conan”,
21,

wBelie®,
22]

“Valeria”]
ages=[25,

Creating two lists. Now you can call each list, and individual items:

print (*{0[0]} is {1[0]} years old. Whereas {0I[1]}
is {1[1]1} years old.”.format (names, ages))

Python 3.4.2 Shell o T £

File Edit Shell Debug Options Windows Help “‘ |
Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al

[GCC 4.9.1) on linux

Type "copyright", "credits" or "license()" for more information.

>>> pames=["Conan”, “Belit", “Valeria")

>>> ages=[25, 21, 22] 0
>>> print("{0[0]} 1s {1[0]} years old. Whereas {0[1]} 1s {1[1]} years old.".form
at(names, ages)) .
COnaIn is 25 years old. Whereas Belit is 21 years old.

>>>

www.pclpublications.com 73

E Working with Data>

Date and Time

When working with data it's often handy to have access to the time. For example, you

may want to time-stamp an entry or see at what time a user logged into the system and
for how long. Luckily acquiring the date and time is easy, thanks to the Time module.

TIME LORDS

The Time module contains functions that help you retrieve the current system time, reads the date from strings, formats the

time and date and much more.
STEP 1 First you need to import the Time module. It's one
that's built-in to Python 3 so you shouldn’t need to
drop into a command prompt and pip install it. Once it's imported,
you can call the current time and date with a simple command:

import time
time.asctime ()

Python 3.4.2 Shell
Eile Edit Shell Debug Options Windows Help J

Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al
[GCC 4.9.1] on linux

Type “"copyright"”, “"credits" or "license()" for more information. 4
>>> mpert time

>>> time.asctime()

'Thu Sep 7 08:44:24 2017’

>>>

STEP 2 The time function is split into nine tuples, these are
divided up into indexed items, as with any other

tuple, and shown in the screen shot below.

Index Field Values
0 4-digit year 2016
1 Month 1to12
2 Day 1to 31
3 Hour 0to 23
4 Minute 0 to 59
5 Second 0 to 61 (60 or 61 are leap-seconds)
6 Day of Week 0 to 6 (0 is Monday)
7 Day of year 1 to 366 (Julian day)
8 Daylight savings -1, 0, 1, -1 means library determines DST

www.pclpublications.com

STEP 3

time.local.time ()

You can see the structure of how time is presented
by entering:

The output is displayed as such: *time.struct time (tm
year=2017, tm mon=9, tm mdsy=7, tm hour=s, tm
min=6, tm sec=13, tm wday=3, tm_yday=250, tm_
isdst=0) ’; obviously dependent on your current time as opposed
to the time this book was written.

Python 3.4.2 Shell = ox ;m
Elle Edit Shell Debug Qptions Windows Help
Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al |
[6CC 4.9.1] on linux fil
Type "copyright”, "credits" or "license()" for more information.
>>> port time
>>> time.localtime()
time.struct_time(tm_year=2017, tm_mon=9, tm_mday=7, tm_hour=9, tm_min=6, tm_sec=

13, tm_wday=3, tm_yday=250, tm_isdst=0)
>>> |

-
STEP 4 There are numerous functions built into the Time
module. One of the most common of these is
.strftime(). With it, you're able to present a wide range of arguments

as it converts the time tuple into a string. For example, to display the
current day of the week you can use:

time.strftime (‘%$A’)

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help ‘

Python 3.4.2 (default, Oct 19 2014, 13:31:11) —“
[GCC 4.9.1] on linux |
Type “copyright”, “credits” or “license()" for more information.

>>> import time
>>> time.strftime('%A") ‘
*Thursday"'

>>>

STEP 5 This naturally means you can incorporate various
functions into your own code, such as:

.strftime (“%a”)
.strftime (“%B")
.strftime (“%b”)
.strftime (“%$H")
strftime (“$HEM")

time
time
time
time
time.

Python 3.4.2 Shell

Eile Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) A‘
[GCC 4.9.1] on linux
Type "copyright”, "credits" or "license()" for more information. I

>>> import time

>>> time.strftime("%a")
"Thu"

>>> time.strftime("%8")
‘September”

>>> time.strtime(“%b")
"Sep’

>>> time.strftime("¥H")
09"

>>> time.stritime("%HI")

‘0941
s> |
]

STEP 6 Note the last two entries, with %H and %H%M, as

you can see these are the hours and minutes and as
the last entry indicates, entering them as %H%M doesn’t display the
time correctly in the Shell. You can easily rectify this with:

time.strftime (“$H:%M")

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) [~
[GCC 4.9.1] on linux &
Type "copyright”, "credits" or "license()" for more information.

>>> import time

>>> time.strftime("¥a") I
‘Thu'

>>> time.strftime("%8")
‘September

>>> time.strftime("¥%b")
“Sep’

>>> time.stritime("¥H")
“09*

>>> time.strftime("%HzM")
*0941°

>>> time.stritime("%¥H:3M")
'09:43"

>>>

STEP 7 This means you're going to be able to display
either the current time or the time when
something occurred, such as a user entering their name. Try
this code in the Editor:

import time
name=input (“Enter login name: “)
name, “\d”)

“logged in at”,

print (“Welcome”,
print (“User:”, name,
strftime (“%H:%M"))

time.

Try to extend it further to include day, month, yearand so on.

e £at shel Debuy Qptoss wedoms el
Cdefault. Oet 19 2014, 1IN

(Date and Time

You saw at the end of the previous section, in the
code to calculate Pi to however many decimal places

the users wanted, you can time a particular event in Python. Take
the code from above and alter it slightly by including:

start_time=time.time ()
Then there’s:

endtime=time.time () -start_time

-

home/pi/Documents/Python Code/logintime.py (3.42) - o x

logintime.py
File Edit Format Run Qptions Windows Help

import time Al
start_time=time.time()
name=1input("Enter login name: ")
endtime=time.time()-start_time
print("Welcome”, name, "\d")

print("User:", name, “"logged in at", time.strftime("%H:%M"))
print ("It took". name, endtime, "to login to their account.™)

STEP 9 The output will look similar to the screenshot below.
The timer function needs to be either side of the
input statement, as that's when the variable name is being created,
depending on how long the user took to log in. The length of time is
then displayed on the last line of the code as the endt ime variable.

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help ‘

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1] on linux

Type “copyright”, “credits" or "license()" for more information.
>> RESTART

>>>
Enter login name: David

Welcome David \d

User: David logged in at 09:52

It tlook David 5.311823129653931 to login to their account.
>>>

STEP 10 There's a lot that can be done with the Time
module; some of it is quite complex too, such as
displaying the number of seconds since January 1st 1970. If you
want to drill down further into the Time module, then in the Shell
enter:help (time) to display the current Python version help file
for the Time module.

Python 3.4.2 Shell S

Elle Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al |

[GCC 4.9.1) on linux

Type “"copyright”, "credits" or "license()" for more information. s

>>> import time f ‘

>>> help(time) |

Help on built-in module time:

NAME ‘
time - This module provides various functions to manipulate time values.

DESCRIPTION
There are two standard representations of time. One 1s the number
of seconds since the Epoch, in UTC (a.k.a. GMT). It may be an integer
or a floating point number (to represent fractions of seconds).
The Epoch is system-defined: on Unix, it is generally January 1st, 1970.
The actual value can be retrieved by calling gmtime(0).

The other representation is a tuple of 9 integers giving local time.
The tuple items are:

year (including century, e.g. 1998)

month (1-12)

www.pclpublications.com 75

Working with Data

Opening Files

In Python you can read text and binary files in your programs. You can also write to Ffile,

which is something we will look at next. Reading and writing to files enables you to
output and store data from your programs.

OPEN, READ AND WRITE

In Python you create a file object, similar to creating a variable, only pass in the file using the open() function. Files are usually

categorised as text or binary.
STEP 1 Start by entering some text into your system'’s text
editor. The text editor is best, not a word processor,
as word processors include background formatting and other
elements. In our example, we have the poem The Cimmerian, by
Robert E Howard. You need to save the file as poem.txt.

] 5 i nenn Options Help

1 renenber

The dark woods, masking slopes of s

The grey clouds’ leaden everlasting

 |The dusky streans that flowed withot
And the lone winds that whispered d

[#pi Documents Create Folder

[Scratch Projects

 Addition py |Vista on vista marching, hills on h
oy Slope beyond slope, each dark with :
i cakepy Our gaunt land lay. So when a man ¢
as A rugged peak and gazed, his shaded
 Circte py v but the endless vista - hill or
8 graphics py 19k8 Fiiday Slope beyond slope, each hooded 1iki
8 Hellopy 45bytes 18/08/17
i 1o 210817 || |11 %as a gloomy land that seemed to
SO oL by 7| [AL1 winds and clouds and dreams tha
8 imgtestpy With bare boughs rattling in the lot
z And the dark woodlands brooding over
8 loop py Not even lightened by the rare dim -
M rsingy 171 |Which made squat shadows out of men
Cimeria, land of Darkness and deep
(& namecount py 101 bytes 18/08/17
&HPipng 4223 210917 8 L1t was so long ago and far away
8 squarepy 155 bytes T 1 have forgot the very name men cal
 testpy 40bytes 18,

& The Cimmerian Poem 1448

6 wordgame py 287 byles 18/08/17

The clouds that piled forever on the
The dinness of the everlasting woods

Character Coding. | Current Locale (UTF:8) =/ LF

Cancal Save

STEP 2 You use the open() function to pass the file into a
variable as an object. You can name the file object

anything you like, but you will need to tell Python the name and
location of the text file you're opening:

poem=open (*/home/pi/Documents/Poem. txt"”)

Python 3.4.2 Shell =B
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) =
[6CC 4.9.1] on linux
Type “copyright”, "credits” or "license()" for more information.

>>> |puem=open(*/home/pi/Documents/Poem. txt")
>>>

76 www.pclpublications.com

STEP 3 If you now enter poem into the Shell, you will get
some information regarding the text file you've just
asked to be opened. You can now use the poem variable to read the
contents of the file:

poem.read ()

Note than a /n entry in the text represents a new line, as you
used previously.

Python 3.4.2 Shell -ox
Eile Edit Shell Debug Options Windows Help
Python 3.4.2 (default, Oct 19 2014, 13:31:11) =
[GCC 4.9.1] on linux

Type “copyright®, “credits” or “license()” for mare infornation.
>>> poem=open(“/home/pi/Documents/Poem. txt*

>>> poem

<_io.TextIOWrapper name='/home/pi/Documents/Poem.txt’ mode="r' encoding='UTF-8'>

>>> poem.read() -
"I remember\nThe dark woods. masking slopes of sombre hills:\nThe grey clouds' leaden everlasting | |l

arch:\nThe dusky streams that flowed without a sound,\nAnd the lone winds that whispered down the
passes.\n\m\nVista on vista marching, hills on hills,\nSlope beyond slope. each dark with sullen t
rees,\n0ur gaunt land lay. So when a man climbed up\nA rugged peak and gazed, his shaded eye\nSaw
but the endless vista - hill on hill,\nSlope beyond slope, each hooded like its brothers.\n\n\nIt
was a gloomy land that seemed to hold\nAll winds and clouds and dreams that shun the sun,\nWith ba
re boughs rattling in the lonesome winds.\nAnd the dark woodlands brooding over all,\nNot even lig
htened by the rare dim sun\nkhich made squat shadows out of men: they called it\nCimmeria, land of
Darkness and deep Night.\m\n\nIt was so long ago and far away\nl have forgot the very name men cal
led me.\nThe axe and flint-tipped spear are like a dream,\nAnd hunts and wars are shadows. I recal
1\n0nly the stillness of that sombre land:\nThe clouds that piled forever on the hills,\nThe dimne
ss of the everlasting woods.\nCimmeria, land of Darkness and the Night.\m\m\noh, soul of mine, bor
n out of shadowed hills,\nTo clouds and winds and ghosts that shun the sun.\nHow many deaths shall
serve to break at last\nThis heritage which wraps me in the grey\nApparel of ghosts? I search my h
eart and find\nCimmeria, land of Darkness and the Night."

STEP 4 If you enter poem.read() a second time you will
notice that the text has been removed from the file.

You will need to enter: poem=open (*/home/pi/Documents/
Poem. txt”) again to recreate the file. This time, however, enter:

print (poem.read())

This time, the /n entries are removed in favour of new lines and
readable text.

Python 3.4.2 Shell

| File Edit Shell Debug Options Windows Help
>>> poem.read()

>>> poem=open(" /home/pi/Documents/Poem. txt")

>>> print(poem.read())

I remember

The dark woods, masking slopes of sombre hills:
The grey clouds’ leaden everlasting arc

The dusky streams that flowed without a Sou

And the lone winds that whispered down the passes

Vista on vista marching. hills on hills \
Slope beyond slope, each dark with sullen trees,

Our gaunt land lay. So when a man climbed up ‘
A rugged peak and gazed, his shaded eye

saw but the endless vista - hill on hill,

Slope beyond slope, each hooded like its brothers.

It was a gloomy land that seemed to hold

All winds and clouds and dreams that shun the sun,
with bare boughs rattling in the lonesome winds.
And the dark woodlands brooding over all,

Not even lightened by the rare dim sun

vhich made squat shadows out of men; !hey called it
Cimmeria, land of Darkness and deep N

STEP 5 Just as with lists, tuples, dictionaries and so on,
you're able to index individual characters of the

text. For example:

poem.read (5)

Displays the first five characters, whilst again entering:
poem.read (5)

Will display the next five. Entering (1) will display one character at
a time.

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default. Oct 19 2014,
[GCC 4.9.1] on linux

Type “copyright*, “credits“ or “license()" for more information.
>>> poem=open("/home/pi/Documents/Poem. txt")

>>> poem.read(5)

"I rem’

>>> poem.read(5)

"ember*

>>> |

13:31:11) Al

L | l

STEP 6

poem=open (*/home/pi/Documents/Poem. txt")

Similarly, you can display one line of text at a time by
using the readline() function. For example:

poem.readline ()
Will display the first line of the text with:
poem.readline ()

Displaying the next line of text once more.

Python 3.4.2 Shell - o x|
File Edit Shell Debug Options Windows Help ‘

Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al
[6CC 4.9.1] on linux
Type "copyright”, "credits” or "license()" for more information. ﬂ

>>> poem=open("/home/p1i/Documents/Poem. txt")

>>> poem.readline()

‘I remember\n’

>>> poem.readline()

'Thel dark woods, masking slopes of sombre hills:\n*
>>>

STEP 7 You may have guessed that you can pass the
readline() function into a variable, thus allowing you

to callit again when needed:

poem=open (*/home/pi/Documents/Poem. txt"”)
line=poem.readline ()
line

Python 3.4.2 Shell ! ‘
File Edit Shell Debug Options Windows Help ‘-‘
Python 3.4.2 (default, Oct 19 2014, 13:31:11) 2| ‘
[6CC 4.9.1] on linux

Type “"copyright”, "credits" or "license()" for more information.
>>> poem=open(“/home/pi/Documents/Poem. txt™)

»>>> line=poem.readline()

>>> line

"I remember\n’

>>3]

<Opening Files

STEP 8 Extending this further, you can use readlines() to
grab all the lines of the text and store them as

multiple lists. These can then be stored as a variable:

poem=open (“/home/pi/Documents/Poem.txt”)
lines=poem.readlines ()

lines[0]

lines[1]

lines[2]

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al
[GCC 4.9.1] on linux "
Type “copyright“, “credits" or “license()" for more information. |
>>> poem=open("/home/pi/Documents/Poem. txt")

>>> lines=poem.readlines()

>>> lines[0]

‘1 remember\n*

>>> lines[1]

‘The dark woods. masking slopes of sombre hills;\n'
>>> lines[2]

“The grey clouds' leaden everlasting arch;\n"

>>>

STEP 9

for lines in lines:

You can also use the for statement to read the lines
of text back to us:

print (lines)
Since this is Python, there are other ways to produce the same output:

poem=open (“/home/pi/Documents/Poem.txt”)
for lines in poem:
print (lines)

Python 3.4.2 Shell - oxj
File Edit Shell Debug Options Windows Help !}
Python 3.4.2 (default, Oct 19 2014, 13:31:11) Jm

[6CC 4.9.1) on linux

Type "copyright”, "credits” or "license()" for more information.

>>> poem=open(“/home/pi/Documents/Poem. txt")

>>> for lines 1in poem: |
print(lines)

I remember
The dark woods, masking slopes of sombre hills;

The grey clouds' leaden everlasting arch;

STEP 10 Let's imagine that you want to print the text one
character at a time, like an old dot matrix printer
would. You can use the Time module mixed with what you've looked
at here. Try this:

import time

poem=open (“/home/pi/Documents/Poem.txt”)
lines=poem.read/()

for lines in lines:

end="")

time.sleep(.15)

print (lines,

The output is fun to view, and easily incorporated into your own code.

G ot Shel Qebug gptions wndows Ll
Fythen 3.4.3 (default. oct 19 2014, 13:31:11)
40711 en Tinux
“Copyright-. “credits” or “licenss()" for mere information.
RESTART

A lanes. snd=-")
Time.sleesi . 13)

www.pclpublications.com

E Working with Data>

Writing to Files

The ability to read external files within Python is certainly handy but writing to a file is

better still. Using the write() function, you're able to output the results of a program to
a file, that you can then read() back into Python.

WRITE AND CLOSE

The write() Function is slightly more complex than read(). Along with the filename you must also include an access mode which
determines whether the File in question is in read or write mode.

STEP 1 Start by opening IDLE and enter the following:

t=open (“/home/pi/Documents/text .
txt" . Ilwll)

Change the destination from /home/pi/Documents to your own

system. This code will create a text file called text.txt in write mode
using the variable ‘t'. If there’s no file of that name in the location, it
will create one. If one already exits, it will overwrite it, so be careful.

Python 3.4.2 Shell =X
File Edit Shell Debug Options Windows Help ‘

Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al |
[GCC 4.9.1] on linux

Type “"copyright", “credits" or "license()" for more information.
>>> t=open(“/home/pi/Documents/text. txt™, “w")

>>>

STEP 2 You can now write to the text file using the write()
function. This works opposite to read(), writing lines

instead of reading them. Try this:

t.write (“You awake in a small, square room. A
single table stands to one side, there is a locked

door in front of you.”)

Note the 109. It's the number of characters you've entered.

Python 3.4.2 Shell _oox
File Edit Shell Debug Options Windows Help ‘I
Python 3.4.2 (default, Oct 19 2014, 13:31:11) =

[GCC 4.9.1] on linux

Type "copyright”, "credits" or "license()" for more information.

>>> t=open("/home/pi/Documents/text.txt", "w")

>>> t.write("You awake in a small, square room. A single table stands to one sid
e, there is a locked door in front of you.")

109

>5>

78 www.pclpublications.com

STEP 3 However, the actual text file is still blank (you can
check by opening it up). This is because you've
written the line of text to the file object but not committed it to the
file itself. Part of the write() function is that you need to commit the
changes to the file; you can do this by entering:

t.close ()

Python 3.4.2 Shell

File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) |-
[GCC 4.9.1] on linux

Type “copyright”, "credits" or “license()" for more information.

>>> t=open("/home/pi/Documents/text. txt™, "w")

>>> t.write("You awake in a small, square room. A single table stands to one sid
e. there is a locked door in front of you.")

109

>>> t.close()

>5> |

STEP 4 If you now open the text file with a text editor,
you can see that the line you created has been
written to the file. This gives us the foundation for some interesting
possibilities: perhaps the creation of your own log file or even the

beginning of an adventure game.

Python 3.4.2 Shell
e Cdt Shell Debug Options Windows Lielp

Python 3.4 2 (default. Oct 19 2014. 13:31:11) at
[6CC 4.9.1] on linux

Type “copyright”.
>>> t=open("/

File Edit Search Options Help
[rou awake in a small, square t
there is a locked door in fror

“credits” or “license()" for more information.
)

s a locked door in

109
>> Iuhse()

STEP 5 To expand this code, you can reopen the file using
‘a’, for access or append mode. This will add any text
at the end of the original line instead of wiping the file and creating
anew one. For example:

t=open (“/home/pi/Documents/text.txt”,"a")

t.write (“\n”)

t.write (" You stand and survey your surroundings.
On top of the table is some meat, and a cup of

water.\n”)

-
Python 3.4.2 Shell =0 %

File Edit Shell Debug Options Windows Help l |
Python 3.4.2 (default, Oct 19 2014, 13:31:11) —=d\
[GCC 4.9.1] on linux
Type “copyright", “"credits" or "license()" for more information.
>>> t=open("“/home/pi/Documents/text.txt","a")
>>> t.write("\n")
1

>>> t.write("You stand and survey your surroundings. On top of the table is some
meat, and a cup of water.\n")
94

>>>
(=] 1.

STEP 6 You can keep extending the text line by line,
ending each with a new line (\n). When you're
done, finish the code with t.close() and open the file in a text
editor to see the results:

t.write (“*The door is made of solid oak with iron
It’s bolted from the outside,
in. You are a prisoner!.\n”)
t.close()

strips.

locking you

small, square roon. A single table stands o one side,
a locked door in front of you

STEP 7 There are various types of file access to consider
using the open() function. Each depends on how the
file is accessed and even the position of the cursor. For example, r+
opens a file in read and write and places the cursor at the start of
the file.

 — — ~
Python 34 el =4 8K “toxt it
Ele Edt shell Debug Optons Windows Help I} File Edit Search Options Help
Python 3.4.2 (default. Oct 19 2014, 13:31:11) Fl Adventure Game!
1

on Linux

You awake in a small, square room, A single table s
there is a locked door in front of you

You stand and survey your surroundings. On top of tl
meat, and a cu :

The door is made of solid oak with iron strips. It'
outside, locking you in. You are a prisoner!

— |
T a4

<Writing to Files

STEP 8 You can pass variables to a file that you've created
in Python. Perhaps you want the value of Pi to be
written to a file. You can call Pi from the Math module, create a new
file and pass the output of Piinto the new file:

import math
print (“Value of Pi is: “,math.pi)

print (*\nWriting to a file now..”)

File Edit Format Run QOptions Windows Help
math

import

print("value of Pi is: ",math.pi)

print("\nWriting to a file now...")

SIEP 9

pi=math.pi

Now let's create a variable called pi and assign it the
value of Pi:

You also need to create a new file in which to write Pi to:
t=open (“/home/pi/Documents/pi.txt”,"w")

Remember to change your file location to your own particular
system setup.

writepitofile.py - /home/pi/Docume..ython Code/writepitofile.py (34.2) - o x

File Edit Format Run Options Windows Help
import math

print(“value of Pi is: ",math.pi)
print("\nWriting to a file now...")
pi=math.pi

t=open(”/home/pi/Documents/pi. txt™, "w")

STEP 10 To finish, you can use string formatting to call the
variable and write it to the file, then commit the

changes and close the file:

t.write(“Value of Pi is: {}”.format (pi))
t.clesel()

You can see from the results that you're able to pass any variable to
afile.

of PL s 3.41992683589793

& to & file nom...

www.pclpublications.com

E Working with Data>

Exceptions

When coding, you'll naturally come across some issues that are out of your control.

Let's assume you ask a user to divide two numbers and they try to divide by zero. This

will create an error and break your code.

EXCEPTIONAL OBJECTS

Rather than stop the flow of your code, Python includes exception objects which handle unexpected errors in the code. You
can combat errors by creating conditions where exceptions may occur.

STEP 1

to divide a number by zero. This will report back

with the ZeroDivisionError: Division by zero message, as seen in the

screenshot. The ZeroDivisionError part is the exception class, of
which there are many.

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help

You can create an exception error by simply trying

STEP 3 You can use the functions raise exception to create
our own error handling code within Python. Let's
assume your code has you warping around the cosmos, too much
however results in a warp core breach. To stop the game from
exiting due to the warp core going supernova, you can create a
custom exception:

‘ raise Exception (“warp core breach”)

Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux
Type “copyright", “credits" or “license()" for more information.
>>> 1/0
Traceback (most recent call last):
File "<pyshell#0>", line 1, in <module>
1/0
ZeroDivisionError: division by zero
>>>

STEP 2 Most exceptions
are raised

automatically when Python
comes across something that's
inherently wrong with the code.
However, you can create your
own exceptions that are designed
to contain the potential error and
react to it, as opposed to letting
the code fail.

80

www.pclpublications.com

Python 3.4.2 Shell - o x
! File Edit sShell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) =
[GCC 4.9.1] on linux
Type “copyright”, “credits" or “"license()" for more information.
>>> raise Exception("warp core breach")
Traceback (most recent call last):
File "<pyshell#0>", line 1, in <module>
raise Exception(“warp core breach”)
Exception: warp core breach
s>]

STEP 4 To trap any errors in the code you can encase the
potential error within a try: block. This block consists
of try, except, else, where the code is held within try:, then if there's
an exception do something, else do something else.

Untitled
Eile Edit Format Run Qptions Windows Help

Insert your operations here ---->
pt Exception 1:
15 an excpetion do this ---->
pt Exception 2:
If there 1= another exception do this ---->

" If there is no exception, then do this ----3

STEP 5 For example, use the divide by zero error. You can
create an exception where the code can handle the

error without Python quitting due to the problem:

Erye:
\\))
\\))

a=int (input (*Enter the first number:
b=int (input (“Enter the second number:
print (a/b)
except ZeroDivisionError:
print (“You have tried to divide by zero!”)
else:
print (“You didn’t divide by zero. Well done!”)

e Gt Sheh Qebuy gptoms gndows el Fie B Fgmat Bun Gotions Windews Heb
) n 1
1) » st

mmbar: ")
i momnar 3)

I

STEP 6 You can use exceptions to handle a variety of useful
tasks. Using an example from our previous tutorials,

let's assume you want to open a file and write to it:

tExy:
Ext =
Wy)
txt.write (“This is a test. Normal service will
shortly resume!”)

open (“/home/pi/Documents/textfile.txt”,

except IOError:

print (“Error: unable to write the file. Check
permissions”)

else:

print (“Content written to file successfully.

Have a nice day.”)

(Exceptions

STEP 8 Naturally, you can quickly fix the issue by changing

the “r" read only instance with a “w” for write. This,

as you already know, will create the file and write the content then
commit the changes to the file. The end result will report a different
set of circumstances, in this case, a successful execution of the code.

P -ox% exception? py - fhome smen. /Py o
Ele Edt Shell Debug Qptions Windows Help ﬁp» 0t Fgal fun Qptlons Wdows Heln
Python 3.4.2 (GeTault, 0Ct 19 20 :
(&€ 491} on Tinux
Type “Copyt ight". "credits® or “license()" for
TaRT

|

s

©

P
unable to write the file. Check permissions i

RESTART P

st

int (“cont
> t.close()
Contant written to file successfully. Have 3 nice day.

d—

file fdit Seach Options lielp
This 1s a test. Normal service will shortly resume!

STEP 9 You can also use a finally: block, which works in a
similar fashion but you can’t use else with it. To use

our example from Step 6:

Ery:
Easkl =
\\rn)
Ery:
txt.write (“This is a test. Normal service will

open (“/home/pi/Documents/textfile.txt”,

shortly resume!”)
finally:
print (“Content written to file successfully.
Have a nice day.”)
txt.close()

except IOError:

txt.close() . print (“Error: unable to write the file. Check
« ccestonzy - Homerp/Dosumen hon G ncesnani oy 342) & x p— -
B Gt 5ho Dobun St Mndows o 1 the 808 rumat i crtons om0 permissions”) .
R P l i R R | nmminon worsaw oo 1
R N — ¢ ety coumaty oyt 8083 sttt e 18 20ke T o
RESTART [66C 4.9.1] on linux]
=) i e e o p—

le to write the file. Check pamissions

Obviously this won't work due to the file textfile.

“r" part). So in

STEP 7 :
txt being opened as read only (the “r

this case rather than Python telling you that you're doing something
wrong, you've created an exception using the IOError class
informing the user that the permissions are incorrect.

File Edit Format Run Options Windows Help |

anse(

Error: unsble to meite the file, Check permissions

-

STEP 10 As before an error will occur as you've used the
“r" read-only permission. If you change it to a “w”,
then the code will execute without the error being displayed in the
IDLE Shell. Needless to say, it can be a tricky getting the exception

code right the first time. Practise though, and you will get the hang
of it.

oy
Ele E8 Shl Debug Qptions Yindows Heb

342 shel _ox

|
il =r
I

txt = open("/home/pi/Documents/textfile.txt", "r")

txt.write("This is a test. Normal service will shortly resume!")
except IOError:

- print (“Error: unable to write the file. Check permissions"”)

7”;;r1m: (“Content written to file successfully. Have a nice day.")
" txt.close()

Tythen 332 (Geault. Oct 15 2018, TTNITY ol

& writeen T file successfully. Kave 3 nice day

Ivi
fin 251

E Working with Data>

Python Graphics

While dealing with text on the screen, either as a game or in a program, is great, there

will come a time when a bit of graphical representation wouldn’t go amiss. Python 3
has numerous ways in which to include graphics and they're surprisingly powerful too.

GOING GRAPHICAL

You can draw simple graphics, lines, squares and so on, or you can use one of the many Python modules available, to bring out

some spectacular effects.
STEP 1 One of the best graphical modules to begin learning
Python graphics is Turtle. The Turtle module is, as
the name suggests, based on the turtle robots used in many schools,
that can be programmed to draw something on a large piece
of paper on the floor. The Turtle module can be imported with:
import turtle.

Python 3.4.2 Shell - o x|
Elle Edit Shell Debug Options Windows Help ‘
Pythun 3.4.2 (default, Oct 19 2014, 13:31:11) =
[GCC 4.9.1] on linux Wl

Type "copyright”, "credits” or "license()" for more information.

>>> import turtle
>5>

STEP 2

import turtle

Let's begin by drawing a simple circle. Start a New
File, then enter the following code:

turtle .cirele (50)
turtle.getscreen() ._root.mainloop ()

As usual press F5 to save the code and execute it. A new window will
now open up and the ‘Turtle’ will draw a circle.

82 www.pclpublications.com

STEP 3 The command turtle.circle(50) is what draws the
circle on the screen, with 50 being the size. You
can play around with the sizes if you like, going up to 100, 150 and
beyond; you can draw an arc by entering: turtle.circle (50,
180), where the size is 50, but you're telling Python to only draw
180° of the circle.

—

——r

o NIE

STEP 4 The last part of the circle code tells Python to keep
the window where the drawing is taking place to
remain open, so the user can click to close it. Now, let’s make a square:
import turtle
print (“Drawing a square..”)

for t in range (4) :
turtle.forward(100)
turtle.left (90)

turtle.getscreen() . _root.mainloop ()

You can see that we've inserted a loop to draw the sides of the square.

STEP 5

turtle.color (“Red”)

You can add a new line to the square code to add
some colour:

Then you can even change the character to an actual turtle by entering:
turtle.shape (“turtle”)

You can also use the command turtle.begin £ill(),and
turtle.end £il1 () tofillin the square with the chosen colours;
red outline, yellow fillin this case.

STEP 6 You can see that the Turtle module can draw
out some pretty good shapes and become a little
more complex as you begin to master the way it works. Enter
this example:

from turtle import *
collor(‘red’,
begin £ill ()
while True:
forward (200)
left (170)
if abs(pos())
break
end £ill()
done ()

‘yvellow’)

=Wl

Square.py - /home/pi/Documents/Square.p!
Fle Edit Format Run Options Windows Help
1 turtle Lnpor
color('red’, ‘yellow')
begin_fill()

It's a different method,
but very effective.

fornard(200)
left(170)
if abs(pos()) < 1:

end_fill()
done()

STEP 7 Another way in which you can display graphics is
by using the Pygame module. There are numerous
ways in which pygame can help you output graphics to the screen
but for now let’s look at displaying a predefined image. Start by
opening a browser and finding an image, then save it to the folder
where you save your Python code.

raspbery pi logo at DuckDuckGo - Chromium

@ raspbery pilogo - x \' a8
< C | @ Secure | htips.//duckduckgo.com; t=raspt w0 G
United Kingdom v Safe Search: Swict v Al Sizes v AllTypes v AllLayouss v All Colours x

Raspberryl

(Python Graphics m

STEP 8 Now let's get the code by importing the Pygame module:

import pygame
pygame.init ()

img = pygame.image.load (“RPi.png”)

white = (255, 255, 255) H imgtest py - /home/pi/Docut
w = 900 | File Edit Format Run Options Windows Help
h = 450 s B

screen = pygame.display. J| =€ = pygame. image.load("RE1.pog™)

set_mode ((w, h))
screen.fill ((white))

white = (255, 255, 255)
w = 900

h = 450

screen = pygame.display.set_mode((w. h))
screen. fill((white))

screen. fill((white))
screen.blit(img,(0.0))
pygame.display. flip()

screen.fill ((white))
screen.blit (img, (0,0)))
e“vén(n pygame.event.get():

i7 event.type == pygame.QUIT:
pygame. quit()

pygame.display.flip()

while True:

for event in pygame.event.get () :

if event.type == pygame.QUIT:
pygame.quit ()
STEP 9 In the previous step you imported pygame, initiated
the pygame engine and asked it to import our saved

Raspberry Pilogo image, saved as RPi.png. Next you defined the
background colour of the window to display the image and the

window size as per the actual image dimensions. Finally you have a
loop to close the window.

w = 900

h = 450

screen = pygame.display.set_mode((w, h))
screen.fill{(white))

screen.fill((white))
screen.blit{img,(0,0))
pygame.display.flip()

for event in pygame.event.get():
1T event.type pygame.QUIT:
pygame.quit()

whnile True

STEP 10 Press F5 to save and execute the code and your
image will be displayed in a new window. Have a
play around with the colours, sizes and so on and take time to look
up the many functions within the Pygame module too.
o

Ele g3t Fomat Bun Gptons wndows Help
pygame window e -

'Raspberrg Pi

= pygame.display. set_mode((w, h))
il ((shite))

creen.£111((shite))
n.blit(ing, (0.0))
- dizplay-14p()
event i1 pygane.event_gt()
event. type == pygame.QUIT:
pygane. quit()

www.pclpublications.com 83

E Working with Data>

Combining What
You Know So Far

Based on what you've looked at over this section, let’s combine it all and come up with

a piece of code that can easily be applied into a real-world situation; or at the very
least, something which you can incorporate into your programs.

LOGGINGIN

For this example, let’s look to a piece of code that creates user logins and then allows them to log into the system and write
the time they logged in at. You can even include an option to quit the program by pressing ‘q’.

STEP 1 Begin by importing the Time module, creating
a new dictionary to handle the usernames and
passwords and creating a variable to evaluate the current status of
the program:

import time
users = {}
status = “”

1‘ Elle Edit Format Run Options Windows Help ‘

|
|B] import time A
users = {}

status = "

STEP 2 Next you need to define some functions. You can
begin by creating the main menu, where all users

will return to after selecting the available options:

def mainMenu() :
global status
status = input (“Do you have a login account?

y/n? Or press g to quit.”)

if status == “y”:
oldUser ()

elif status == “n”:
newUser ()

elif status == “g”:

quit ()

i‘ . *login.py - /home/pi/Documents/Python Code/login py (3.4.2)*
‘E‘ Flle Edit Format Run Options Windows Help
import time N

users = {}
status = "

Jof mainMenu():
bal status
L | status = input("De you have a login account? y/n? Or press q to quit.”)
I status == “y":
olduser()
elif status == "n":

newUser()

status == "q":
quit()
84 www.pclpublications.com

STEP 3 The global status statement separates a local
variable from one that can be called throughout
the code, this way you can use the g=quit element without it being
changed inside the function. We've also referenced some newly
defined functions: oldUser and newUser which we'll get to next.
lef mainMenu():
lobal status
status = input("Do you have a login account? y/n? Or press q to quit.")

if status == "y“:
oldUser()

elif status == “n":
newUser()

elif status == "q":
quit()

STEP 4 The newUser function is next:

def newUser() :

createlLogin = input (“Create a login name: “)

if createlogin in users:
print (“\nLogin name already exists!\n”)
else:
createPassw = input (“Create password: “)
users [createlogin] = createPassw
print (“\nUser created!\n”)
logins=open (“/home/pi/Documents/logins.txt”,
\\all)
logins.write (“\n” + createlLogin + “ “ +
createPassw)

logins.close ()

This creates a new user and password, and writes the entries into a
file called logins.txt.

quit()

f newUser():
createLogin = input(“Create a login name: “)

f createlLogin in users:
print ("\nLogin name already exists!\n")

createPassw = input(“Create password: ")
users(createlLogin] = createPassw

print("\nUser created!\n")
logins=open("/home/pi/Documents/logins. txt", "a")
logins.write("\n" + createlLogin + " " + createPassw)
logins.close()|

STEP 5 You will need to specify your own location for the
logins.txt file, since we're using a Raspberry Pi.

Essentially, this adds the username and password inputs from the
user to the existing users{} dictionary, so the key and value structure
remains: each user is the key, the password is the value.

def newUser():
createlLogin = input(“Create a login name: ")

Lf createlLogin 1in users:

print ("\nLogin name already exists!\n")
createPassw = input("Create password: ")
users[createLogin] = createPassw
print("\nUser created!\n")
logins=open(“/home/pi/Documents/logins. txt”, "a")
logins.write("\n" + createlLogin + " " + createPassw)
logins.close()

STEP 6 Now to create the oldUser function:

def oldUser():
login = input (“Enter login name: “)

passw = input (“Enter password: “)

check if user exists and login matches
password
if login in users and users[login] == passw:

print (“\nLogin successful!\n”)

print (“User:”, login, “accessed the system
on:”, time.asctime())
else:
print (“\nUser doesn’t exist or wrong

password!\n”)

[B status
status = input("Do you have a login account? y/n? Or press q to quit.")
1l status == "
olduser()
elif status ==
newUser()
=111 status ==

quit()

def newUser():
createlogin = input(“Create a login name: “)

if createlLogin in users:
print ("\nLogin name already exists!\n")

else:

createPassw = input(“Create password: ")

users[createLogin] = createPassw

print("\nUser created!\n")

logins=open(“/home/pi/Documents/logins. txt™, “a")

logins.write("\n" + createLogin + " " + createPassw)

logins.close()

lef olduser():
login = input("Enter login name: ")
passw = input("Enter password:)

check 1if user exists and login matches password
1f login in users and users[login] == passw:
print ("\nLogin successful!\n")
print ("User:“, login, "accessed the system on:",

time.asctime())

print (“\nUser doesn't exist or wrong password!\n")

STEP 7 There’s a fair bit happening here. There are login
and passw variables, which are then matched to the

users dictionary. If there’s a match, then you have a successful login
and the time and date of the login is outputted. If they don’t match,
then you print an error and the process starts again.

le? olduser():
login = input("Enter login name: ")
passw = input(“Enter password: ")

check if user exists and login matches password
if login in users and users[login] == passw:
print ("\nLogin successful!\n")
print ("User:", login, "accessed the system on:",

print ("\nUser doesn't exist or wrong password!\n")

time.asctime())

(Combining What You Know So Far

STEP 8 Finally, you need to continually check that the ‘q" key
hasn't been pressed to exit the program. We can do

this with:

while status != “g”:

status = displayMenu ()

*login.py - /home/pi/Documents/Python Codi

File Edit Format Run Options Windows Help

import time =
users = {}
status = ""

def mainMenu():
global status
status = input(“Do you have a login account? y/n? Or press q to quit.")
if status == "y":
olduser()
elif status == "n":
newUser ()
elif status == "q":
quit()

det newUser():
createlLogin = input("Create a login name: ™)

if createLogin in users:
print (“\nLogin name already exists!\n")

else:

createPassw = input(“Create password: *)

users[createLogin] = createPassw

print(“\nUser created!\n")

logins=open("/home/pi/Documents/logins.txt”, "a")

logins.write("\n" + createLogin + " " + createPassw)

logins.close()

def olduser():
login = input(“Enter login name: “)
passw = input("Enter password: ")

check if user exists and login matches password
f login in users and users[login] == passw:
print ("\nLogin successfull\n")

rint (“User:", login, “accessed the system on:", time.asctime())

print ("\nUser doesn't exist or wrong password!\n")

1le status != "q":
status = displayMenu()

STEP 9 Although a seemingly minor two lines, the while
loop is what keeps the program running. At the end
of every function it's checked against the current value of status. If
that global value isn't ‘g’ then the program continues. If it's equal to
‘q’ then the program can quit.

while status != “qg":
status = displayMenu()

STEP 10

You can now create users, then log in with their
names and passwords, with the logins.txt file

being created to store the login data and successful logins being
time-stamped. Now it's up to you to further improve the code.
Perhaps you can import the list of created users from a previous
session and display a graphic upon a successful login?

www.pclpublications.com

m Working with Data>

Python in Focus:
Gaming

Although not always considered as the ideal programming language for developing
games, Python has come a long way in recent years and is now one of the contributing

elements to a huge number of titles.

The video game industry generates something in the region of $140 billion each year, and that number is growing fast. It's a long way from
the 8-bit days of the Commodore 64 and ZX Spectrum; the arcade titles that used to devour our pocket money and the wood panelled
home consoles that Atari lovingly developed. These days, it's all about teams of coders, graphic artists, musicians, PR, projects and

development platforms.

GAME CODE

Coding a game from scratch, using raw code, has become
something of the past. Most games these days are created using
arange of development tools. These tools can be off-the-shelf
engines, such as the Unreal Engine, while others are custom built
around an original product, such as the world generating engine
that Bethesda use for the Skyrim and Fallout series of games.
Others examples can be coded from the ground up, but these
are generally few and far between. So where does Python fit
into all this?

The limiting factor with Python is performance. While most
games require a huge degree of performance from the platform
for which they are written, Python's code, which is good, isn’t
really designed to cope with the fast-paced formula on which
games such as Battlefield or the Call of Duty series are based.
These games are often coded with C++, or some other form of
low-level programming language. But that doesn’t mean Python
is left out in the cold when it comes to game development, in
factit's quite the opposite.

MONITOR FOR 6802 1.4 9-14-80 TSC ASSEMBLER PAGE 2

€000 ORG ROM+$0000 BEGIN MONITOR
C000 BE 00 70 START LDS #STACK

*k ek ek ok ke
FUNCTION: INITA - Initialize ACIA
INPUT: none

OUTPUT: none

CALLS: none

DESTROYS: acc A

R

0013 RESETA EQU %$00010011

0011 CTLREG EQU %00010001

€003 86 13 INITA LDA A #RESETA RESET ACIA

C005 B7 80 04 STA A ACIA

€008 86 11 LDA A #CTLREG SET 8 BITS AND 2 STOP
CO0A B7 80 04 STA A ACIA

CO0D 7E CO F1 JMP SIGNON GO TO START OF MONITOR

T T T T T
* FUNCTION: INCH - Input character

* INPUT: none

* OUTPUT: char in acc A

* DESTROYS: acc A

* CALLS: none

* DESCRIPTION: Gets 1 character from terminal

86 www.pclpublications.com

BUILDING TOOLS

In the game industry, Python is mostly limited to the
development of in-game tools used by the developers of the
game, or to help bridge the gaps between different areas of
code. For example, in-game tools coded in Python can be used by
designers to create levels for the game, or specific elements that

would make up a character’s inventory, or even creating dialog
between the player and non-playing characters in the game.

You will also find that Python can be used to control the game's
Al (Artificial Intelligence), which will give the characters in a game
a certain element of life. As an example, the popular Sims games
consist of characters other than the one the gamer controls.
These Sims will go about their business with their actions
determined by the player’s choices, this involves an advanced
form of Artificial Intelligence that is coded using Python.

Other examples include many of the available open world
games, where the introduction of the player will change the
course of a village's, Town's, or even city's inhabitant's behaviour.
Blow up a few cars in the middle of the street and it'll affect

the way the other drivers behave; jump up and down on top of

a market stall in the middle of a medieval village and the folk
around you will react. This, again, is all down to Python code
written within the main code of the game, alongside the game
development engine.

(Python in Focus: Gaming a

PYTHON-POWERED GAMES

Some good examples of the types of games in which Python is
used are the following:

Battlefield 2 - Python is used for the game’s add-ons and
functionality of the player elements.

The Sims - Al, and many of the game's interactions.

Civilisation — Python is used throughout the Civ games,
controlling movement and the non-player Al.

Eve Online - Utilises Python for floating point number
calculations and other tasks.

World of Tanks — Python is used to control Al objects and detail
the large amount of graphical data.

In particular, it's worth noting that Python's use in games is due
to its ability to automate repetitive tasks quickly. While another
programming language may be faster at drawing the graphics
on the screen, Python can quickly repeat resizing hundreds of
textures in batches. There's also Python's excellent and sizeable
libraries that can be tweaked for certain tasks, specifically
in-game tasks freeing up other components to deliver the
performance that modern games need.

KEEP ON
GAMING

In short, while Python may
not be the ideal language
with which to create a
modern game entirely, its
use is often behind the
scenes, in areas where other
programming languages
will struggle. Python can

be used as the glue that
sticks elements of game
technologies together,
creating complex Al or simply
designing a dialog box.

www.pclpublications.com 87

E Glossary of Python Terms>

Glossary of Python Terms

Just like most technology, Python contains many confusing words and acronyms. Here

then, for your own sanity, is a handy glossary to help you keep on top of what's being
said when the conversation turns to Python programming.

Argument

The detailed extra information used by Python to perform more
detailed commands. Can also be used in the command prompt to
specify a certain runtime event.

Block

Used to describe a section or sections of code that are
grouped together.

Break

A command that can be used to exit a for or while loop. For example,
if a key is pressed to quit the program, Break will exit the loop.

Class
Aclass provides a means of bundling data and functionality together.
They are used to encapsulate variables and functions into a single entity.

Comments

A comment is a section of real world wording inserted by the
programmer to help document what's going on in the code. They
can be single line or multi-line and are defined by a # or .

Debian

A Linux-based distro or distribution that forms the Debian Project.
This environment offers the user a friendly and stable GUI to
interact with along with Terminal commands and other forms of
system level administration.

Def

Used to define a function or method in Python.

Dictionaries
Adictionary in Python is a data structure that consists of key and
value pairs.

Distro
Also Distribution, an operating system that uses the Linux Kernel as its
core but offers something different in its presentation to the end user.

Editor
An individual program, or a part of the graphical version of Python,
that enables the user to enter code ready for execution.

Exceptions

Used as a means of breaking from the normal flow of a code block in
order to handle any potential errors or exceptional conditions within
the program.

88 www.pclpublications.com

Expression
Essentially, Python code that produces a value of something.

Float

An immutable floating point number used in Python.

Function
Used in Python to define a sequence of statements that can be
called or referenced at any time by the programmer.

GitHub
A web-based version control and collaboration portal designed for
software developers to better manage source code.

Global Variable

Avariable that is useable anywhere in the program.

Graphics

The use of visual interaction with a program, game or operating
system. Designed to make it easier for the user to manage the
program in question.

GUI

Graphical User Interface. The interface which most modern
operating systems use to enable the user to interact with the
core programming of the system. A friendly, easy to use graphical
desktop environment.

High-Level Language

A programming language that's designed to be easy for people to read.

IDLE

Stands for Integrated Development Environment or Integrated
Development and Learning Environment.

Immutable
Something that cannot be changed after it is created.

Import
Used in Python to include modules together with all the
accompanying code, functions and variables they contain.

Indentation

Python uses indentation to delimit blocks of code. The indents are
four spaces apart, and are often created automatically after a colon
is used in the code.

Integer
A number data type that must be a whole number and not
a decimal.

Interactive Shell
The Python Shell, which is displayed whenever you launch the
graphical version of Python.

Kernel

The core of an operating system, which handles data processing,
memory allocation, input and output, and processes information
between the hardware and programs.

Linux
An open source operating system that's modelled on UNIX.
Developed in 1991 by Finnish student Linus Torvalds.

Lists
A Python data type that contains collections of values, which can be
of any type and can readily be modified.

Local Variable
Avariable that's defined inside a function and is only useable inside
that function.

Loop
A piece of code that repeats itself until a certain condition is met.
Loops can encase the entire code or just sections of it.

Module
A Python file that contains various functions that can be used within
another program to further extend the effectiveness of the code.

Operating System

Also OS. The program that's loaded into the computer after the
initial boot sequence has completed. The OS manages all the other
programs, graphical user interface (GUI), input and output and
physical hardware interactions with the user.

Output

Data that is sent from the program to a screen, printer or other
external peripheral.

PIP

Pip Installs Packages. A package management system used to install
and manage modules and other software written in Python.

Print

A function used to display the output of something to the screen.

Prompt

The element of Python, or the Command Line, where the user
enters their commands. In Python it's represented as >>> in the
interactive shell.

Pygame

A Python module that's designed for writing games. It includes
graphics and sound libraries and was first developed in
October 2000.

<Glossary of Python Terms a

Python
An awesome programming language that's easy to learn and use,
whilst still being powerful enough to enjoy.

Random
A Python module that implements a pseudo-random character
generator using the Mersenne Twister PRNG.

Range
A function that used to return a list of integers, defined by the
arguments passed through it.

Root

The bottom level user account used by the system itself. Root is the
overall system administrator and can go anywhere, and do anything,
on the system.

Sets

Sets are a collection of unordered but unique data types.

Strings

Strings can store characters that can be modified. The contents of
a string are alphanumerical and can be enclosed by either single or
double quote marks.

Terminal

Also Console or Shell. The command line interface to the operating
system, namely Linux, but also available in macOS. From there you
can execute code and navigate the filesystem.

Tkinter

A Python module designed to interact with the graphical
environment, specifically the tk-GUI (Tool Kit Graphical User
Interface).

Try
A try block allows exceptions to be raised, so any errors can be
caught and handled according to the programmer’s instructions.

Tuples
An immutable Python data type that contains an ordered set of
either letters or numbers.

UNIX

A multitasking, multiuser operating system designed in the ‘70s at
the Bell Labs Research Centre. Written in C and assembly language

Variables
A data item that has been assigned a storage location in the
computer’'s memory.

X

Also X11 or X-windows. The graphical desktop used in Linux-based
systems, combining visual enhancements and tools to manage the
core operating system.

Zen of Python
When you enter: import this into the IDLE, the Zen of Python
is displayed.

www.pclpublications.com 89

Save d whopping

5% Off!

ALL 1ecn vmianudais

with 7¢) Papercut

FOR ALL CHROMEBOOK MODELS

The jOS &

Guidebook

e kay et el oo 105 7 sxpcined n i £l

ihone
Manual
the
stimore uice o gerirg

The essential guide ©
mastering your home

" \nsider
? | n-depth sacrets
oo | Tutoras Cis

) papercut

The Complete

. Chromebook
|F hone | User Manual
Master your Chromebook and
Google's Chrome OS

Vour uimare gude to maste g

THE APPLE

&WATCHE
MANUAL

ot cmazing &Watch

TH[SAMSUNG

Galax
MANUAL

Everyihing you need
oy gel more rom yaur Gaiaxy

(&= Coding Manual

10/ Sesontion Programming guides & projects

— puiososon

Dropercae *on

Not only can you learn new skills and master your
tech, but you can now SAVE 25% off all of our coding

and consumer tech digital and print guidebooks!

Simply use the following exclusive code at checkout:

NYHF23CN

www.pclpublications.com

Python For Beginners

20 - ISBN: 978-1-912847-11-2

Published by: Papercut Limited

Digital distribution by: Readly AB

© 2024 Papercut Limited All rights reserved. No part of this
publication may be reproduced in any form, stored in a retrieval
system or integrated into any other publication, database or
commercial programs without the express written permission of the
publisher. Under no circumstances should this publication and its
contents be resold, loaned out or used in any form by way of trade
without the publisher’s written permission. While we pride
ourselves on the quality of the information we provide, Papercut
Limited reserves the right not to be held responsible for any

mistakes or inaccuracies found within the text of this publication.
Due to the nature of the tech industry, the publisher cannot

guarantee that all apps and software will work on every version of
device. It remains the purchaser’s sole responsibility to determine
the suitability of this book and its content for whatever purpose.
Any app images reproduced on the front cover are solely for
design purposes and are not representative of content.

We advise all potential buyers to check listing prior to purchase for
confirmation of actual content. All editorial opinion herein is that of
the reviewer - as an individual - and is not representative of the
publisher or any of its affiliates. Therefore the publisher holds no
responsibility in regard to editorial opinion and content.

This is an independent publication and as such does not
necessarily reflect the views or opinions of the producers of apps
or products contained within. This publication is 100% unofficial.
All copyrights, trademarks and registered trademarks for the
respective companies are acknowledged.

Relevant graphic imagery reproduced with courtesy of brands and

products. Additional images contained within this publication are
reproduced under licence from Shutterstock. Prices, international
availability, ratings, titles and content are subject to change.

All information was correct at time of publication. Some content
may have been previously published in other volumes or titles.

Papercut Limited
\J Registered in England & Wales No: 04308513
g g

ADVERTISING - For our latest media packs please contact:
Brad Francis - brad@papercutltd.co.uk
Web - www.pclpublications.com

INTERNATIONAL LICENSING - Papercut Limited has many great
publications and all are available for licensing worldwide.
For more information email: james@papercutitd.co.uk

